Project title:	Nutrient management for protected ornamentals, bulbs and outdoor flowers
Project number:	PO BOF 003
Project leader:	Hilary Papworth, NIAB
Report:	Final report, December 2022
Previous report:	Annual report, January 2021
Key staff:	Hilary Papworth Benjamin Tea
Location of project:	Cambridge
Industry Representative:	
Date project commenced:	01/09/2018

DISCLAIMER

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

© Agriculture and Horticulture Development Board 2022. No part of this publication may be reproduced in any material form (including by photocopy or storage in any medium by electronic mean) or any copy or adaptation stored, published or distributed (by physical, electronic or other means) without prior permission in writing of the Agriculture and Horticulture Development Board, other than by reproduction in an unmodified form for the sole purpose of use as an information resource when the Agriculture and Horticulture Development Board or AHDB Horticulture is clearly acknowledged as the source, or in accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights reserved.

All other trademarks, logos and brand names contained in this publication are the trademarks of their respective holders. No rights are granted without the prior written permission of the relevant owners.

AUTHENTICATION

We declare that this work was done under our supervision according to the procedures described herein and that the report represents a true and accurate record of the results obtained.

Hilary Papworth

Glasshouse and Ornamental Crop Specialist

NIAB

aaro

Signature

Date 22/12/2022

Benjamin Tea MBPR (Hort) FQA (Hort)

Glasshouse Manager

NIAB Signature

Date 22/12/2022

Re	port	autho	orised	bv:
1.0		aatin	71100a	Ny.

[Name]

[Position]

[Organisation]

Signature Date

[Name]	
[Position]	
[Organisation]	
Signature	Date

© Agriculture and Horticulture Development Board 2023. All rights reserved

CONTENTS

GROWER SUMMARY	6
Headline	6
Background	6
Summary	7
Financial Benefits	11
Action Points	11
SCIENCE SECTION	12
Introduction	12
Introduction – Section 1. Interactions between in type and pot size with relation to the delivery of species	liquid feed to different plant
Materials and methods	14
Results	16
Discussion	23
Conclusions	27
Knowledge and Technology Transfer	29
Glossary	29
References	
Appendices	32
Introduction – Section 2. Improved Primula nutritio	-
Materials and methods	40
Results	44
Discussion	52
Conclusions	56

Knowledge and Technology Transfer	57
Glossary	57
References	57
Appendices	58
Introduction – section 3 Determine best practice for mana	aging N application to
field-grown narcissus in relation to stem length, base rot	
Matariala and mathada	
Materials and methods	
Results	
Discussion	
Conclusions	79
Knowledge and Technology Transfer	80
Glossary	80
References	80
Appendices	81
Introduction – section 4 The effects of NO ₃ versus NH ₄ b	ased fertilisers / plant
nutrients on plant growth and quality	95
Materials and methods	95
Results	98
Discussion	101
Conclusions	104
Knowledge and Technology Transfer	105
Glossary	105
References	105
Appendices	106

GROWER SUMMARY

Headline

Using best practice growing methods is as important as the type of feed applied; monitoring growing media and water, as well as plant growth are vital in avoiding nutrient deficiency, toxicity, and unnecessary waste of feeds.

Application of liquid feed through overhead irrigation has the benefit of foliar uptake of nutrients but in periods of low water use, better results are achieved with a controlled release fertiliser (CRF).

Financial savings can be made using capillary matting as part of the irrigation system but monitor for unwanted salts.

Marginal leaf necrosis in primula has multiple causes, but calcium (Ca) nutrition can be improved by adapting the growing environment and application of foliar calcium nitrate $(Ca(NO_3)_2)$.

Application of nitrogen (N) to field grown narcissus at leaf emergence has no benefit over later application.

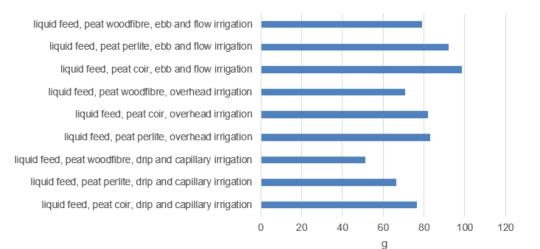
Application of N at a rate of 80 kg/ha increases harvest bulb weight in field grown narcissus but does not increase incidence of basal rot (*Fusarium oxysporum* f.sp. *narcissi* (FON)). Application of N at rates of 50 kg/ha or lower have no impact on harvest bulb weight.

Background

The target of this project is to make nutritional recommendations for key crops in the protected ornamental, bulb and outdoor cut flower industry which could form part of the guidance available in RB209. When making nutritional recommendations it is important to understand the nutritional requirements of the plants and also how the different variables in the production system will alter the availability of different nutrients.

A key area of investigation was to see how peat-reduced growing media mixes containing different components interacted with liquid feed applied via different irrigation methods, and to different crops at different times of year. The aim was to provide best practice advice on the use of liquid feed in protected ornamental crops, and how to make changes in feed regimes in response to changes in growing media as peat is phased out of use.

Specific nutrient problems were identified in the project outline and in the scoping study; investigations were undertaken to improve primula nutrition for avoidance of leaf edge scorch and to tackle iron (Fe) deficiency in pH sensitive crops.


In a 3 year study on N nutrition in field-grown narcissus carried out at the trial sites in Cornwall and Lincolnshire, the aim was to review the current advice available in RB209 and to also look at the potential link between N application and incidence of basal rot.

Summary

Experimental investigations were carried out over a 4-year period, with trials undertaken at NIAB's Cambridge site for glasshouse work, and in Lincolnshire and Cornwall for the fieldbased narcissus trials. In Cambridge a bespoke set up of tabletop benches and irrigations systems were used to compare liquid feed application to bedding crops through different irrigation methods, a total of 5 trials were completed. The trial compared the results for plants grown in peat reduced growing medias, which were 70:30 peat perlite mix, 70:30 peat wood fibre mix, and 70:30 peat coir mix. A standard balanced feed was used, this was OMEX Adjust range, O-Mix 21-7-21 + 1.6 MgO + TE. In trials growing pansy in autumn/winter, the liquid feed was compared with a CRF with NPK ratio of 12-7-18 + TE, and a release time of 2 to 3 months (Osmocote Bloom), at a rate of 3 g per I.

Monitoring was carried out on growing media pH and electrical conductivity (EC) by saturated media extraction (SME), irrigation water and run off pH and EC, and nutrient content of growing media and leaf tissue by laboratory analysis.

The trial results showed that in spring/summer where water use was high, the 3 irrigation systems investigated (ebb and flow, overhead and drip irrigation with capillary matting) all produced a saleable crop. Plants grown under the ebb and flow irrigation system had the highest fresh weight, except where the growing media mix contained 30% wood fibre.

Figure 1. Results for spring/summer trial of petunia showing fresh weight (g) of above ground growth observations dated 07/08/2019.

Use of overhead irrigation proved very effective where water use was moderate to high, and in some trials this produced a fresh weight that was equal or higher than those grown with

7

ebb and flow irrigation. As the feed concentration is the same this is likely a result of the added action as a foliar feed. As overhead irrigation used less water in the trials than ebb and flow, this can be regarded as more efficient use of water and feed.

Use of overhead irrigation with hard water did result in the greatest increases in growing media pH over the duration of the trial, which is a concern for pH sensitive crops and resulted in bicarbonate induced chlorosis in petunia.

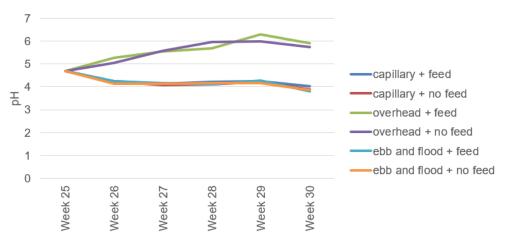


Figure 2. pH over duration of trial in peat and coir mix growing media treatments, from spring/summer trial of petunia 2019 trial.

In the winter where water use was very low, moving from liquid feed to a CRF produced the highest fresh weight. This was the case even when using an irrigation system with capillary matting with which liquid feed produced very low weight plants.

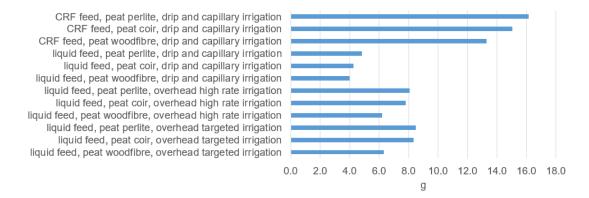


Figure 3. Results for winter trial of pansy showing fresh weight of above ground growth displayed according to irrigation method and ranked for weight (g), observations dated 06/01/2022.

The results in figure 3 also show that when watering was increased in the overhead irrigation (high rate vs targeted), there was no positive effect. Demonstrating that if plants do not require

additional water, they will not take up additional liquid feed. Increasing the feed:water ratio is a better option, which will help to avoid waterlogging and anaerobic growing media conditions.

Results showed that with 70% peat and 30% wood fibre growing media mix, plants had the lowest fresh weight in every combination of feed and irrigation, indicating that mixes high in this substrate would benefit from an increased concentration of feed. The growing media mixes containing 30% coir had consistently higher potassium (K) levels, due to properties of the substrate. Mixes high in coir should be checked for high levels of K and choose a feed which accounts for this to avoid inhibition of N and Ca uptake.

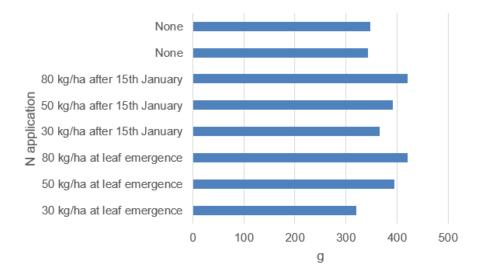
Investigations into leaf edge scorch in primula indicated that there are multiple causes of leaf necrotic tissue. Work over 4 trials at NIAB and a comparison with a commercial nursery indicate that causes can be diverse, as shown in figure 4.

Figure 4. Comparison of different possible causes of necrotic leaf margins, (from left to right) potential nutrient toxicity (possibly Na), thermal stress and potential nutrient deficiency (Ca).

Nutrition can be improved by altering environmental factors that affect movement of Ca in the plant, such as reducing humidity at crop leaf height, or avoiding water stress which also has the benefit of reducing the risk of thermal stress. Leaf necrosis in both cases is related to problems with lack of transpiration in the plant.

Ca nutrition was also seen to improve with foliar application of $Ca(NO_3)_2$, but not at rates lower than 1:250 of a compound containing 22.5% Ca, 15% N.

Primula is pH sensitive and prone to bicarbonate induced chlorosis due to Iron (Fe) deficiency, in trial conditions this was reversed by foliar applications of a 2% sequestered Fe product at 5 ml in 1 l water at weekly intervals for 4 weeks.


As growing media pH is a key factor in nutrient availability it was a reoccurring theme in the work. Changing the NH_4 (ammonium) to NO_3 (nitrate) ratio to influence pH is well documented in other studies, and where NH_4 is present as a greater part of the ratio in liquid feeds and base fertilisers it will have an acidifying effect. The opposite effect is seen when NO_3 is greater. For growers transitioning from peat-based growing media to peat-reduced and peat-

9

free mixes, the ability to influence pH using different forms of N could be of increasing relevance. Water retention in peat-reduced and peat-free mixes can be an issue, leading to more frequent or higher volume irrigation. If using water high in bicarbonate (HCO_3^{-}), the increase in pH seen over time could be greater than using a 100% peat media.

The N nutrition study in field grown narcissus showed that after 2 years of N application, there was an increase in harvested bulb weight with an increase in rate of N, but this was not reflected in stem length or the number of stems produced. The results suggest that the influence from the year (environment), has a greater effect for stem length than N application, and bulb age is a greater factor for number of flowers.

The weight of bulbs harvested at the end of the trial was higher with the application of N at a rate of 80 kg/ha from between 9% and 21% in the varieties tested, but not at lower rates.

Figure 5. Treatment details and results for weight of harvest bulbs per m from Lincolnshire trial, observations dated 15/06/2022

The results do not support that it would be beneficial for application of N to take place at an earlier stage of the crop, i.e. at leaf emergence when that falls within the Nitrate Vulnerable Zone (NVZ) closed period. No improvement was seen over later application at the same site. This means that N applied during this period where NVZ restrictions do not apply, is likely to be less effective than if it is applied later in the growth stage of the plant.

The study has generated very little data in relation to a link between N fertility and basal rot. Currently there is no evidence to suggest application of N at rates of up to and including 80 kg/ha increased the rate of infection, but this may be a result of the trial design rather than there being no link.

Financial Benefits

By adapting irrigation methods to time of year, savings on fertiliser use can be made. Results indicate that during summer a reduction in fertiliser cost of 44% could be made using capillary matting.

The cost implication of changing from a liquid feed regime to CRF ranges from a 3 fold increase to potentially cost neutral. Cost saving is dependent on the efficiency of the watering system and therefore the amount of liquid feed wasted. Use of liquid feed maybe cheaper, however use of CRF has lower equipment cost and staff time input.

Symptoms of Fe deficiency in primula can be reversed by foliar application of liquid sequestered Fe at a cost of 30 pence* per 1000 plants, saving around 10% of the crop from any deficiency.

Routine Saturated Media Extraction (SME) testing can be completed at minimal cost^{*}, initial outlay for EC/pH Meter – ExTech II - \pounds 150 and 2 x 500ml jugs - \pounds 10, plus price per test of 20 pence for distilled water and coffee filters.

Save fertiliser costs by avoiding early application of N (at leaf emergence) for field grown narcissus as it has no impact on stem length or flower number.

* Prices are correct as of submission date of report – December 2022.

Action Points

- In periods of low transpiration be vigilant of overwatering and accumulation of salts (nutrients) in irrigations systems using capillary matting.
- Reduce humidity in the glasshouse to improve Ca content in plants, and avoid water stress (drought) to reduce the risk of scorch symptoms
- Electrical conductivity (EC) is only a method for measuring total ions. Undertake sampling and laboratory testing of irrigation water to get a clear understanding of the amount and type of nutrient ions that are present in the water supply. This can prevent unnecessary fertiliser use and avoid potential nutrient toxicity.
- Regularly monitor the growing media EC to identify both inadequate and excessive levels, particularly in low water use periods.
- Use controlled release fertilisers (CRF) or increase the feed/water ratio for winter crops where irrigation can be low in response to weather conditions.
- In spring and summer Primula crops, reduce humidity in the glasshouse to improve Ca content in plants. This should reduce scorch symptoms.
- Apply N as a top dressing to increase harvested bulb weight at rate of 80 kg/ha but avoid early application as it has no impact.

SCIENCE SECTION

Introduction

The target of this project is to make nutritional recommendations for key crops in the protected ornamental, bulb and outdoor cut flower industry which were planned to form part of the guidance available in RB209. The project was split into different areas of work which were identified in the scoping study described in <u>POBOF 003 year 1 annual report</u>. This identified the key crops, the common problems experienced in those crops and the conditions in which they were most frequently grown.

Outside of the crop specific goals for the project, two other significant aims were identified. Firstly, it was to increase understanding of the impact on plant nutrition when the peat content of growing media is reduced. As reported in year 1, significant work has been carried out on some aspects of crop nutrition with direct relevance to the pot plants and bedding sector (Johnson *et al* 2013). Good understanding on the interaction between plants, substrate and composition of water-soluble fertiliser exists, including some tested models for prediction of effect on substrate pH (Fisher *et al* 2014b). However, much of this work relates to 100% peat based growing media and knowledge needs to be expanded to cope with the changes taking place in response to the UK government aims of net zero carbon emissions. Secondly it was to provide a resource for training, as a knowledge gap was identified during discussions with the industry. There are few resources available to train staff other than formal qualifications such as FACTS or as part of a college horticultural qualification.

A program of work was designed to try and achieve all these aims, this work was carried out over a four-year period; in this final report the areas of study are reported on as separate sections but there are areas of commonality which are drawn together in the grower summary of this report.

During the period of the project the UK and other parts of the world were subject to restrictions in response to the Coronavirus COVID-19 pandemic, this limited opportunities for in person meeting, Knowledge Exchange (KE) and nursery-based trials. Before restrictions were lifted the industry had voted to end the levy funding AHDB activities which has further limited the KE opportunities for this work, and the opportunities for project work to further explore the findings.

Introduction – Section 1. Interactions between irrigation type, growing media type and pot size with relation to the delivery of liquid feed to different plant species

In this section of the project, work was carried out examining the interaction of irrigation, liquid feed and peat reduced growing media mixes. In the peat reduced growing media mixes, 3 different types of alternative materials with different properties were used, with the rate of replacement material used at 30% of the overall mix. In the move to meet government targets for net zero carbon emissions, and the goal of parts of the industry to be more environmentally sustainable, growing media is moving to a minimum of 40% peat replacement and entirely peat free professional mixes are more common. During this project the requirements for peat-free growing media have moved on and deadline for a UK ban on retail peat growing media is confirmed for 2024, and for the professional user this is expected for 2028 - 2030. By looking at three components with different chemical properties it is hoped that understanding of the interactions between them and water-soluble fertiliser can be developed to support the industry in this move.

However, it is important to note that the source of components and processing methods has changed over the period of the project, and that is expected to continue as the growing media industry evolves their products. Wood fibre, coir and peat will have changed source and/or processing method, and this will have to some extent changed the properties of the growing media that is made from them. This could include ability to retain water, buffering capacity, natural content of ions and biological activity; all of these will impact in the requirement for application of nutrition for the plants that are grown in them. The project is reflecting the situation that growers themselves face and will continue to face in the coming years as all peat is phased out from use, and growing media manufactures develop mixes with new components to meet industry demand for the peat-free product. This highlights the need for understanding of the properties of the media and the interaction with irrigation and nutrient, as well as the necessity of regular monitoring and testing by the grower.

A total of 5 trials were carried out in the period from 2019 to 2022. The work on the 2 trials carried out in 2019 is described in the document <u>POBOF 003 annual report 2019</u>, and the work on the 2 trials completed in 2020 is described in the document <u>POBOF 003 annual report 2020</u>.

In the final year of the experimental work, investigations continued into the most effective route for application of liquid feed into bedding crops grown under protected environments, with the addition of further investigation into the use of controlled release fertilisers (CRFs) as an alternative method of nutrient delivery.

Materials and methods

In autumn/winter 2021 to 2022 an investigation was undertaken to see if the results obtained in the same period in 2020 were repeated. The trial was grown in a glasshouse at NIAB's Cambridge trial site. The glasshouse was set to maintain a minimum temperature of 10°C, no supplementary lighting was provided, and no shade screens were utilised. The trial was carried out on a tabletop bench fitted with Stal & Plast liners. Each table was L 383cm x W 63cm x H 75cm with its own individual irrigation method incorporated.

The test plant was Pansy 'Carneval® Yellow with Blotch', these were obtained from Volmary as plug plants and were received on 04/10/2021. On 05/11/2021 the plugs were transplanted into H. Smith Plastic 12 cell bedding pack. (D – 23.0 cm, W – 17.5 cm, H – 6.5 cm, Volume: 0.104 lt.) using three different peat reduced growing media mixes. The mixes were 70:30 peat and perlite mix, 70:30 peat and wood fibre mix and 70:30 peat and coir mix.

No wetter or base feed was incorporated into the substrate, and the pH was adjusted to between 5.5 - 6. The peat used was the same for all mixes and was 0-10mm grade, the perlite was 0-6mm grade.

The irrigation was applied by 2 different methods, either overhead manual irrigation or drip irrigation with capillary matting. The overhead irrigation was applied at 2 different rates to see if there was any difference between the plants produced under a high water rate or the more targeted manual irrigation as used in 2019 and 2020 trials.

Irrigation events were determined by the requirements of the plants and all systems were allowed to drain freely following irrigation events, with no water recycling. The water supply used was mains supply for the area (hard water) with no other treatment.

Table 1. Results of chemical anal	vsis for the irrigation	water at the Cambridge site
Table 1. Nesulis of chemical anal	ysis ior the irrigation	water at the Cambridge Site.

	*			mg/I										μg/l					
			nitrate														hardness	Alkalinity	dissolved
Sample	рН	EC µS/cm	N	SO4	В	CU	Mn	Zn	Fe	Cl	Ρ	Κ	Mg	Ca	Na	Carbonate	as CaCO3	as HCO3	Mo
Glasshouse irrigation water	7.7	611	9.8	30.8	0.03	<0.01	<0.01	<0.01	<0.01	39	0.8	2.7	3.74	116.6	16.7	<10	306.5	277	0.31

*pH and conductivity measurements made at 20 °C.

The trial contained 2 different feed regimes, these were the same as used in the 2020 trials.

The feeds used in the different treatments were as follows:

1) A liquid feed (L) from the OMEX Adjust range, O-Mix 21-7-21 + 1.6 MgO + TE which was made up to a stock solution of 1 kg/10 l which was diluted 1:200 using a Dosotron

D3 Green Line injector. The resulting feed supplied 105 ppm of N in the form of 1.6% $NH_4 N$, 3.4% $NO_3 N$, 16% Ureic N.

2) A controlled release fertiliser (CRF) with NPK ratio of 12-7-18 + TE, and a release time of 2 to 3 months (Osmocote Bloom), incorporated at a rate of 3 g per I of growing media. As no base feed is present in the growing media an initial liquid feed will be applied to provide nutrition while the product activated.

Variable	Code	Types
Feed	L	Liquid
	CRF	Controlled release fertiliser
Irrigation type code	IAi	Manual Overhead – targeted watering (6-8 I per irrigation event)
	IAii	Manual Overhead – high rate watering (10-12 I per irrigation event)
	IC	Capillary with trickle tape
Growing media type code	SA	Peat and perlite mix
	SB	Peat and wood fibre mix
	SC	Peat and coir mix

Table 3. Treatment descriptions and codes used in the trial.

Bench no.	3	3	3	4	4	4	1	1	1	2	2	2
Treatment no.	1	2	3	4	5	6	7	8	9	10	11	12
Feed	L	L	L	L	L	L	L	L	L	CRF	CRF	CRF
Irrigation code	IAi	IAi	IAi	IAii	IAii	IAii	IC	IC	IC	IC	IC	IC
Substrate code	SA	SB	SC	SA	SB	SC	SA	SB	SC	SA	SB	SC

The trial contains 12 treatments arranged on 4 benches arranged in a split split plot design, with 6 cell packs (each containing 12 plants) per treatment per species.

Assessments were made 9 weeks after potting, this consisted of plant height measured in centimetres (cm), a count of the number of flowers and the fresh weight of the above ground growth in grams (g), along with photographs of plant and roots from each of the treatments.

The data from the trial was statistically analysed using analysis of variance (ANOVA) in order to determine the difference between treatments.

Weekly observations on growing media electrical conductivity (EC) and pH were made from saturated media extraction (SME) using EXTECH ExStik II meter.

A sample of plant tissue and growing media from each treatment was also sent for laboratory analysis at the end of the trial. The material sent was a bulk sample taken from at least 10 randomly selected plants.

Results

In previous years the results for fresh weight proved to be the most illustrative indicator of performance so these have been used again in 2022 to illustrate the outcome of the trial. See Tables 1, 2 and 3, in Appendix 1 for all plant observations and statistical analysis.

The significant difference quoted have been seen at 95% confidence interval.

Feed code Growing media type	L	L	L	L	L	L	L	L	L	CRF	CRF	CRF
code	SA	SB	SC	SA	SB	SC	SA	SB	SC	SA	SB	SC
Irrigation												
type code	IAi	IAi	IAi	IAii	IAii	IAii	IC	IC	IC	IC	IC	IC
Treatment no.	1	2	3	4	5	6	7	8	9	10	11	12
Average results Height (cm) (L.S.D. 0.6866)	s for pla	ant obs 3.7	ervatio 4.3	ns 4.6	4.1	3.8	3.9	3.6	3.6	6.8	6.4	6.9
Number of flowers (L.S.D 1.525) Fresh weight of above ground growth (g) (L.S.D 1.601)	1.2	0.8	1.5 8.3	1.5 8.1	0.3 6.2	1.2 7.8	0.3 4.8	0.2	0.2 4.3	6.3	5.0	5.7
(2.0.0 1.001)	0.0	0.5	0.5	0.1	0.2	7.0	4.0	4.0	4.5	10.1	15.5	13.0

 Table 4. Results of plant observations dated 06/01/2022.

For plant height no significant difference was observed between treatments 2, 6, 7, 8, and 9. Treatments 1, 3, and 4 are significantly taller than the observation for the smallest treatments. All treatments grown using CRF are significantly taller than those grown with liquid feed, irrespective of the other variables in the trial. No significant difference was observed between the different growing media mixes where the CRF is used.

No significant difference was observed between treatments 1 to 9 in the number of flowers. Treatments grown using CRF all have significantly more flowers than those fed with liquid feed. As with plant height no significant difference was observed between the different growing media mixes where the CRF is used.

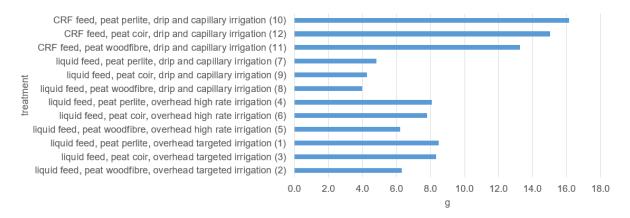


Figure 1. Results for fresh weight of above ground growth displayed according to irrigation method and ranked for weight (g).

The lowest fresh weights are observed in the treatments with drip irrigation and capillary matting with liquid feed, and the highest in the drip irrigation and capillary matting with CRF. When comparing the two overhead irrigation benches, those that were watered in a targeted manner are slightly heavier than those with the higher rate watering regime, however the difference between the plants grown under the 2 rates is not significant in this respect. Within the different watering and feed regimes there are significant differences between the growing media types. With both overhead irrigation and the drip, and capillary with CRF, the growing media blend with wood fibre gives a significantly lower fresh weight than peat and coir, or peat and perlite. There is no significant difference between the fresh weight for the plants grown in the peat and coir, or peat and perlite mixes within the combinations of feed and irrigation method.

The results for higher fresh weight with CRF are reflected also in the results for the leaf tissue analysis, the highest values for total nitrogen (N) in leaf tissue is seen where CRF is used with the impact greater for nitrate (NO_3) form than ammoniacal (NH_4) form. The growing media analysis shows the greater availability of N in these treatments.

potaoolalli (10); oai			• • • • • • • • •									
Feed code Growing	L	L	L	L	L	L	L	L	L	CRF	CRF	CRF
media type code	SA	SB	SC	SA	SB	SC	SA	SB	SC	SA	SB	SC
Irrigation												
type code	IAi	IAi	IAi	IAii	IAii	IAii	IC	IC	IC	IC	IC	IC
Treatment no.	1	2	3	4	5	6	7	8	9	10	11	12
Leaf tissue ana	lysis (r	esults	in mg/l))								
NH4	43.5	8.3	47.3	45.5	39.3	42.9	28.3	29.5	32.0	55.4	47.2	45.7
NO3	6.7	26.8	67.7	7.5	0.9	7.2	4.1	3.2	1.2	339.7	141.4	224.1
Р	457	470	662	443	365	621	153	217	372	477	339	439
К	3597	4736	5299	3609	4099	5347	3670	4265	5073	5338	4785	5343
Growing media	analys	sis										
рН	5.3	5	5.9	5.3	4.9	6	5.2	4.9	5.7	4.8	4.5	5.1
EC @20c (μS/cm)	36	39	70	29	34	61	58	49	112	265	255	276
Total sol N												
(mg/l)	2.8	2	2	1.8	1.5	1.7	1.6	1.5	1.9	40.3	35	34.9
P (mg/l)	0	0	0	0	0	0	0	0	1	5.6	4	5.2
K (mg/l)	3	3.3	54	2	2.6	41.6	3.8	2.9	80	59	52.8	153.1

Table 5. Results of leaf tissue (SAP) and growing media analysis for NH₄, NO₃, phosphorus (P) and potassium (K), samples dated 06/01/2022.

The full results of the leaf tissue and growing media analysis can be found in Tables 1 and 2 in Appendix 2.

In the leaf tissue analysis, the results for K are highest in the peat coir mixes, or where CRF is used. The lowest levels are observed in the peat and perlite growing media mix and with the liquid feed. P levels have been less obviously affected by the form of feed used, it is lowest in the drip irrigation with capillary matting and liquid feed combination, the images below in Figure 2 show purpling of leaves in these treatments which is associated with the symptoms of P deficiency. In pansy, purple margins can also be a symptom of zinc (Zn) deficiency, however in this instance the results of the leaf tissue analysis show treatments 7, 8, and 9 to have values for Zn within the range of all other treatments.

Treatment 1	Treatment 2	Treatment 3
Treatment 4	Treatment 5	Treatment 6
Treatment 7	Treatment 8	Treatment 9
Treatment 10	Treatment 11	Treatment12

Figure 2. Images of plants at final assessment, dated 06/01/2022.

Further images from the trial can be found in Appendix 3 of the report.

The leaf tissue analysis also shows high magnesium (Mg) and calcium (Ca) in the perlite mixes, the cause for this is not entirely clear.

We also observed very high levels of leaf tissue sodium (Na) compared with previous year, in general terms these were x10 of the 2021 results. The increase was particularly high in the

combination of drip irrigation and capillary matting with liquid feed. The experimental design does not give an obvious source of the high levels, but it is possible that these contribute to the poor plant growth.

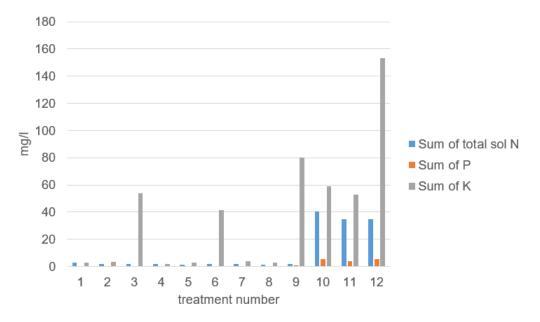


Figure 3. Results of growing media analysis for N, P, and K (mg/l) from samples dated 06/01/2022.

The results for growing media analysis show that the highest EC and total soluble N are found in the treatments that contain CRF.

Within each of the different combinations of irrigation and feed regime, the peat coir mix has the highest EC, with little difference between peat and wood fibre and peat and perlite mixes. Treatment 9 the capillary irrigation, liquid feed and peat and coir mixture has the highest EC of the non-CRF treatments, but the plant material is very small with the second lowest fresh weight. In this treatment high levels of chloride (CI) in the growing media maybe contributing to the high EC, potentially accumulated due to the irrigation method. This also demonstrates that the level of EC is not a good indicator of nutrient availability when used on its own. The levels of P are also highest in treatments grown with CRF feed, in other treatments there are negligible amount of P available in the growing media at this stage, but this has had no observable impact in the levels in the leaf tissue. The results for K are highest in the treatments with peat and coir growing media mixes even when no CRF is used, this mirrors the leaf tissue analysis results.

The laboratory analysis results show that all treatments have growing media pH values at 6 or below. All pH values for wood fibre mixes are below 5 which are the lowest values observed for the different growing media mixes. For each of the irrigation and feed treatment combinations the highest values are seen in the peat and coir mixes, and the lowest in the peat and wood fibre mixes.

When looking at the pH values obtained by SME during the trial the pH follows the same pattern for each growing media under the different combination of irrigation method and feed regimes, with the coir mix having the highest pH, followed by perlite and lowest is wood fibre. This order is not the same as seen in previous years.

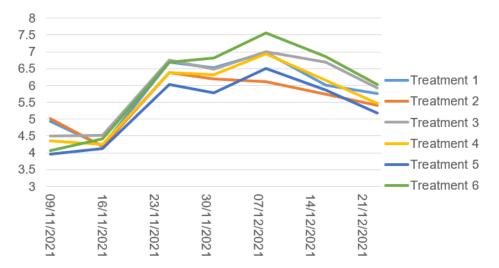


Figure 4. Observations for growing media pH obtained by SME for treatments grown with overhead irrigation.

Full results of the pH and EC values obtained by SME can be found in Tables 3 and 4, Appendix 2 of the report.

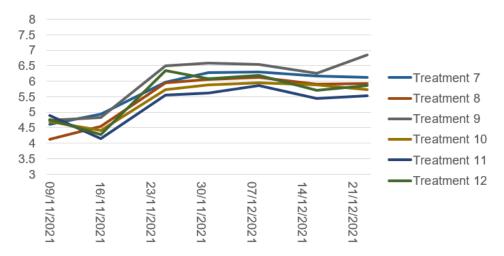


Figure 5. Observations for growing media pH obtained by SME for treatments grown with drip irrigation and capillary matting.

The trend for growing media pH is for it to rise over the duration of the trial, all treatments have higher final pH compared with the starting value. The highest values are seen in samples dated 08/12/2022, 5 weeks after potting, where treatments with overhead irrigation have the

highest values. Highest value overall was seen in treatment 6, followed by 3, both are coir mixes with overhead irrigation.

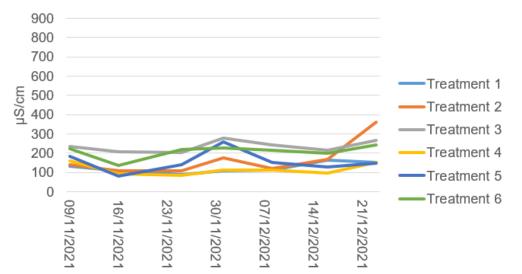
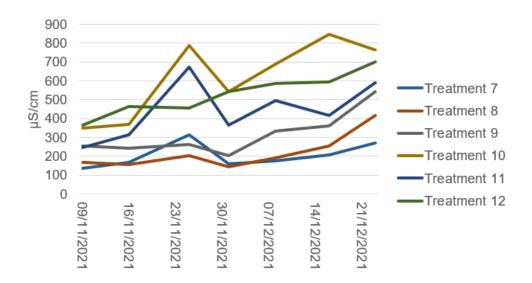



Figure 6. Observations for growing media EC obtained by SME for treatments grown with overhead irrigation.

The EC value for the growing media obtained during the trial show that all treatments receiving liquid feed through overhead irrigation had stable but low EC. The EC for the treatments with growing media mix with peat and coir were higher, but this is as expected as the starting EC of this mix was higher due to the properties of the coir, than the peat and perlite mix, and the peat and wood fibre mix.

The results show that there was no positive impact on the level of EC from the additional water rate and consequently greater quantity of feed. When considering the final EC of the same growing media mixes under the 2 watering regimes, those under the higher watering rate have a lower or equal EC compared with the targeted watering.

Figure 7. Observations for growing media EC obtained by SME for treatments grown with drip irrigation and capillary matting

Where treatments included drip irrigation with capillary matting the EC levels varied more over the duration of the trial, and in the case of the treatments with CRF the levels were consistently higher.

Discussion

From 2 years of data for the trials of autumn/winter grown pansy we have observed a repeat in the following results:

- The plants grown in the growing media mix with 30% perlite had the highest fresh weight in all combinations of feed and irrigation.
- Where feed was applied only in liquid form, the plants grown using overhead irrigation had the highest fresh weights.
- The highest fresh weights for all growing media mixes were observed where CRF was used.
- The combination of CRF and 30% perlite growing media had the highest fresh weight of all treatments, but flower number was not significantly higher than other growing media mixes with the same fertiliser.
- In each irrigation and feed combination the 30% wood fibre growing media mix had the lowest fresh weights and flower numbers.
- The lowest fresh weight in the trial was observed in the combination of drip irrigation and capillary matting with the liquid feed, with the plants grown in 30% wood fibre growing media mix having the lowest of all of these.

The impact of the growing media components on the pH seen in the first year has not been repeated. Based on the previous results it had been anticipated that there would be the greatest increase in growing media pH in the treatments containing wood fibre, this was not the case. The wood fibre mix had the lowest pH over the duration of the trial and the coir mix had the highest, but the non-peat component is only influencing the trend for pH to a certain degree. Other factors influence pH, and in previous reports the impact of bicarbonate (HCO₃ ⁻) levels in water have been discussed in relation to increase of pH over time. In the 2021/2022 autumn winter trial, water use was very low due to environmental factors, i.e., low light and low temperature, and lower watering will have reduced the potential for HCO₃ ⁻ to accumulate in the growing media and cause an increase in pH. Had the water levels been comparable we would have expected to see the same results for pH increase as in 2021/2022 trial.

The temperature during this trial was also lower than in previous years and temperature does have an impact on pH; during monitoring, pH decreases with increase in ambient temperature due to increased ability of water to produce hydrogen ions, lowering pH. As the temperature was lower than the previous year this can be excluded as a reason why the pH may have been observed as lower.

The difference in the components does also need to be taken into consideration. In the introduction to this section the comment was made that over a relatively short period of time the composition of growing media, the source of components and the method of preparing those components will have changed. The perlite used should have remained constant in its properties as it is inert, but the source of peat has changed due to the ban on extraction in Republic of Ireland (now often of Scottish and Baltic origin), and the source and processing method of wood fibre has also changed. This could result in changes in air filled porosity (AFP), cation exchange capacity (CEC) and water retention properties of the growing media, all of these will affect the ability of the media to bind nutrients and make them available to the plants. It is likely that this is the cause of some of the differences in leaf tissue and growing media analysis results over the years.

Use of capillary matting in instances of low water demand by plants has the potential to exacerbate nutrient problems. If liquid feed is used as the nutrient source, the retention of water in the capillary matting reduces the water requirement and consequently the application of feed. Results from previous years show that increasing the feed:water ratio has a positive impact on growth but is not as effective as using overhead irrigation. The holding of water in the capillary matting also has the potential to accumulate unwanted levels of some ions. In Figure 8 below the CI content of growing media can be seen to be highest in treatment 9, which is more than double the amount of the next highest treatment. High CI can cause issues with toxicity, with symptoms of yellow halo on the leaf edges, with necrosis effecting the leaf tip initially and then spreading down the leaf, but also incompatibility with other nutrients. Where CI is high it would be expected that leaf tissue NO₃ is lower, as CI is considered to limit NO₃ uptake and accumulation in plant tissue.

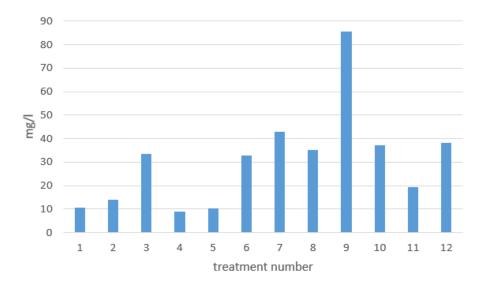


Figure 8. Results for CI content in growing media in samples dated 06/01/2022.

The data over years shows a trend for higher CI levels in growing media where capillary matting is used as part of the irrigation system, and in particular the combination of a growing media mixes containing coir and using capillary matting.

Although CI has been considered a negative factor in N nutrition in plants, and the work in this project appears to demonstrate that, recent studies in tomato and other crop species (Neocleous. D et al, 2021, and Rosales Miguel A. et al, 2020) conclude that CI has an important role in nitrate use efficiency (NUE) and should be considered as a plant macronutrient. The work does not dismiss the toxic effects of CI but indicates it is an important nutrient in the assimilation of NO₃ in the plant, and in water use efficiency (WUE) in its own right.

Work from this project reported on in 2019 and 2020 on spring/summer grown petunia looked at plants growing during periods of higher water requirement, the results from these trials showed the plants with the greatest fresh weight were those grown under an ebb and flow irrigation system, followed by overhead irrigation and the lowest was seen in plants grown using drip irrigation and capillary matting. The records taken on irrigation events and volumes of water used, show that the benches watered with ebb and flood irrigation used more water overall but in fewer irrigation events. With overhead watering the volumes of water and consequently of feed were lower, but visually the plants were comparable in both watering regimes, and where the feed concentration was reduced there was no impact on the fresh weight of the overhead irrigated plants.

In previous reports we hypothesised that absorption of nutrient ions through foliar application could be increasing total nutrient uptake, this would still appear to be a valid conclusion to draw. Fertiliser can contain N in up to 3 forms, inorganic in the form of NH₄ and NO₃ and an

organic form, urea (CH₄N₂O). Unlike the inorganic forms the CH₄N₂O must be hydrolysed into NH₄ by the enzyme urease (Mekonnen et al, 2021), before it can be utilised by the plant. Plants can take up NH₄ and NO₃ through the roots and foliage, CH₄N₂O can also be absorbed by both plant organs (Bowman and Paul, 1992). Absorption of N by the foliage is the likely reason for the results we have seen for improved efficiency of fertiliser use with overhead irrigation when compared with where feed has been introduced via the roots only.

The conversion process of CH_4N_2O into forms of N the plants can use relies on urease, and urease requires nickel (Ni). A lack of Ni can lead CH_4N_2O to build up to toxic levels in tissues, which shows as necrosis in foliage if it is applied as a foliar fertiliser. Ni is not classed as essential to the plant like copper (Cu), Zn, iron (Fe), boron (B), manganese (Mn) and molybdenum (Mo), but its requirement is essential to the hydrolysis of CH_4N_2O which is arguably the major form of N used in off-the-shelf compound fertilisers.

Urease is found in soil either intracellularly (inside soil microbes) or extracellularly (emitted from cells) and is used to convert urea to NH_4 and carbon dioxide. This process is described as ammonification (mineralisation), and it is vital in making N available to plants and demonstrates the importance of microbial activity within growing media, particularly when using CH_4N_2O .

Growing media mixes now contain a variety of substrates that do not act the way peat does, wood fibre and coir are both re-purposed waste products and the processing method results in them having very few microbes within them. If there is insufficient microbial activity in the growing media urea could leach before it is converted, and in the case of these trials this would result in the loss of most of the N (in 21% N content, 16% was CH_4N_2O). It is difficult to draw conclusion around CH_4N_2O content in the trials as it is not part of a standardised test and the resulting NH_4 and NO_3 produced by urea hydrolysis are the results of biological activity which again is rarely tested for.

To look at microbial activity a brief study was undertaken comparing samples from a newly opened bag of peat with 20% wood fibre growing media mix, with one from the glasshouse that had been used for 9 weeks for growing a brassica crop, using standard laboratory methods on 6 different agar plates. The results showed that overall, there was more microbial activity at 9 weeks than there was in the unused media, an example of one of the plates is shown in Figure 9. Method of testing and results of all the plates are in Tables 1 and 2 of Appendix 4 of the report.

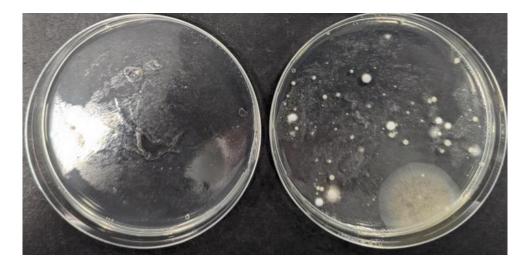


Figure 9. Comparison of microbial activity after 2 days on agar plates from unused (left) and 9 week-old growing media (right), with more bacterial present on used growing media

This shows that there is a real risk of CH₄N₂O leaching from the growing media in the early stages of a crop.

Conclusions

- There is a need to consider different strategies for applying feed according to different levels of water demand, this could either relate to crop type or weather conditions.
- Where water use is high to moderate, overhead irrigation provides the most efficient delivery of liquid feed with both crops examined. The fresh weight is not as great as with ebb and flow irrigation under the same conditions, but the feed concentration can be reduced with no impact on the finished plants.
- Using a liquid feed at every irrigation with NPK ratio of 21-7-21 + 1.6 MgO + TE made up to a stock solution of 1 kg/10 I and diluted 1:200, is a successful delivery method for spring/summer petunia production. The same feed applied to autumn pansy production is successful where water demand is consistently high.
- Where water use is low to very low the feed to water ratio must be increased to ensure adequate supply of feed, but a more successful strategy is to use a CRF to eliminate the need to apply water to supply feed. This will enable growers to apply best practice to watering to avoid problems such as botrytis, root diseases.
- A CRF used in combination with perlite is particularly effective as the perlite has the effect of increasing the AFP of the mix, but also allowing efficient uptake of water by enhanced capillary action (Bragg, 1995).
- Using a CRF with NPK ratio of 12-7-18 + TE, and a release time of 2 to 3 months, incorporated at a rate of 3 g per I of growing media, is a successful delivery method for autumn winter pansy production.

- Mixes with wood fibre as the main non-peat component have a greater feed requirement than those with an inert material or coir.
- Natural properties of coir mean that growing media mixes high in coir can be higher in K, this should be accounted for in the quantity of K in any feed applied used to avoid problem associated with excess K particularly N deficiency.
- Weekly monitoring of growing media pH and EC should be undertaken to allow for modification of feed regimes in response to changes in these levels, it is important to be consistent in the timing of SME tests in relation to feed applications.
- In hard water areas look out for increasing growing media pH over time as this is a problem, particularly with high use of overhead irrigation. This can cause issue with Fe deficiency, due to HCO₃⁻ induced chlorosis.
- Where capillary matting is used, high growing media EC levels can indicate problems with excess nutrients and indicate potential toxicity, or conditions leading to root damage.
- Testing of irrigation water for nutrient content is important as liquid feeds can be tailored to the water quality for optimal efficiency. It can also identify high levels of nutrients that may lead to toxicities such as CI should they build up in the crop. Be particularly vigilant when changing water sources such as from stored to mains water.

Knowledge and Technology Transfer

ICL Hortscience online event 2021 – video presentation – Impact of irrigation systems on delivery of liquid feed.

AHDB Knowledge Library pages:

How to monitor for nutrient management in glasshouse crops Interactions between irrigation method and liquid feed Interactions between growing media and liquid feed Effective application of liquid fertiliser to bedding crops When using a CRF may be a better option Iron nutrition in bedding crops

Glossary

Air Filled Porosity (AFP) is the growing media's ability to hold "air" which is recorded as a percentage. Oxygen, as a part of the air is essential for plant roots which require an aerobic environment to thrive.

Ban on peat extraction in Republic of Ireland - Commercial peat harvesting was effectively banned by the Irish High Court in 2019, which found large-scale harvesting required planning permission as well as a licence from the EPA, and detailed environmental impact assessments, required under EU law.

Cation Exchange Capacity (CEC) is a property of growing media or soil that describes its ability to supply positively charged nutrient ions such as K⁺, Ca⁺, Mg⁺ (cations) to the soil solution for plant to absorb.

A controlled release fertiliser (CRF) uses water, temperature, and microbial activity to slowly breakdown over and release nutrients over a specific period of time, often a number of months.

Electrical conductivity or EC is the ability of a solution to conduct an electrical current. In solution cations and anions can hold a current which can be measured in microsiemens (us/sq cm) or milli Siemens (ms/sq cm).

Nitrate Use Efficiency (NUE) is a measure of the vegetative or reproductive biomass yield per unit of N available in the soil.

The abbreviation pH denotes the potential of hydrogen or the power of hydrogen. pH is a measure of acidity or alkalinity, depending on how many hydrogen or hydroxyl ions there are. The more hydrogen ions the more acidic, the more hydroxyl ions the more alkaline. The pH

scale runs from 1 to 14 with seven being neutral. The scale is logarithmic, meaning pH-4 is 10 times as acidic as pH-5 and 100 times more acidic than pH-6.

Saturated media extraction (SME) is where a soil/substrate sample is diluted down using distilled water (2:1 ratio – distilled water: soil/substrate) and passed through a filter to extract a solution, this can be tested for EC & pH.

Water Use Efficiency (WUE) is defined as the amount of carbon assimilated as biomass produced per unit of water used by the crop.

Urease is an enzyme found in soil either intracellularly (inside soil microbes) or extracellularly (emitted from cells) and converts urea to ammonium and carbon dioxide. This process, which is part of the nitrogen cycle is described as ammonification (mineralisation).

Ammonification (mineralisation) - In soil /substrate urease converts urea (CH4N2O), an organic source of N into ammonia NH4+ and carbonic acid. Urea hydrolysis relies on soil/substrate microbes to aid in this process.

References

Bowman, D. C., & Paul, J. L. (1992). Foliar Absorption of Urea, Ammonium, and Nitrate by Perennial Ryegrass Turf, *Journal of the American Society for Horticultural Science jashs*, *117*(1), 75-79

Bragg, N., (1995). Growing Media (Grower Handbook). Nexus Media Ltd, pg. 32.

Fisher, P.R., Argo, W.R., and Biernbaum, J.A. (2014b). Validation of a fertiliser potential acidity model to predict the effects of water-soluble fertiliser on substrate-pH. *HortScience*. 49: 1061–1066.

Johnson, C.N., Fisher, P.R., Huang, J., Yeager, T.H., Obreza, T.A., Vetanovetz, R.P., Argo, W.R., and Bishko, A.J. (2013). Effect of fertiliser potential acidity and nitrogen form on the pH response in a peat-based substrate with three floriculture species. *Sci. Hortic.* (Amsterdam) 162: 135–143

Mekonnen E, Kebede A, Nigussie A, Kebede G, Tafesse M. Isolation and Characterization of Urease-Producing Soil Bacteria. Int J Microbiol. 2021 Jul 9;2021:8888641. Doi: 10.1155/2021/8888641. PMID: 34335782; PMCID: PMC8286177.

Neocleous. D, Nikolaou. G, Ntatsi. G, Savvas. D: Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution, Agricultural Water Management, Volume 258, 2021

Rosales Miguel A., Franco-Navarro Juan D., Peinado-Torrubia Procopio, Díaz-Rueda Pablo, Álvarez Rosario, Colmenero-Flores José M: Chloride Improves Nitrate Utilization and NUE in Plants, Frontiers in Plant Science, Volume 11, 2020

Appendices

Appendix 1. 2021/2022 autumn winter trial data

Table 1. Plant height

Plant height (cn	n) 06/01/2	2022										
Treatment												
number	1	2	3	4	5	6	7	8	9	10	11	12
Values	4.80	4.50	4.20	5.10	3.80	4.20	3.80	3.40	3.20	6.70	6.70	7.00
	4.40	3.20	3.40	5.60	4.10	3.80	3.40	3.20	3.60	5.40	6.70	6.70
	5.40	3.90	4.70	4.20	4.20	3.40	3.50	3.60	3.10	7.40	6.40	6.70
	5.70	3.60	5.10	4.00	4.10	4.20	4.10	3.40	3.80	7.80	6.40	7.80
	3.00	3.80	4.00	5.10	4.00	4.40	4.10	4.40	3.40	7.40	5.60	6.40
	4.40	3.40	4.40	3.60	4.10	2.90	4.60	3.40	4.60	6.20	6.50	6.80
Average	4.62	3.73	4.30	4.60	4.05	3.82	3.92	3.57	3.62	6.82	6.38	6.90

Analysis of variance

Variate: height_cm

Source of variation d.f.		S.S.	m.s.	v.r. F pr.
Rep stratum	5	2.1024	0.4205	1.19
Rep.*Units* stratum Treatment_no Residual	11 55	105.2349 19.3693		
Total	71	126.7065		

Message: the following units have large residuals.

Rep 2 *units* 10	1.235	s.e. 0.519
Rep 5 *units* 7	-1.557	s.e. 0.519

Tables of means

Variate: height_cm

Grand mean 4.693

Treatment	1	2	3	4	5	6	7
	4.617	3.733	4.3	4.6	4.05	3.817	3.917
Treatment_	8	9	10	11	12		
	3.567	3.617	6.817	6.383	6.9		

Least significant differences of means (5% level)

Table	Treatment_no
rep.	6
d.f.	55
l.s.d.	0.6866

Table 2. Number of flowers

Number of flowers 06/01/2022

Treatment number	1	2	3	4	5	6	7	8	9	10	11	12
Values	2.00	0.00	2.00	2.00	0.00	1.00	1.00	0.00	0.00	6.00	8.00	6.00
	0.00	0.00	0.00	1.00	2.00	3.00	1.00	0.00	0.00	4.00	7.00	4.00
	1.00	1.00	2.00	1.00	0.00	0.00	0.00	0.00	0.00	4.00	6.00	7.00
	2.00	2.00	3.00	5.00	0.00	1.00	0.00	0.00	0.00	9.00	2.00	5.00
	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	7.00	4.00	7.00
	2.00	1.00	2.00	0.00	0.00	1.00	0.00	1.00	0.00	8.00	3.00	5.00
Average	1.17	0.83	1.50	1.50	0.33	1.17	0.33	0.17	0.17	6.33	5.00	5.67

Analysis of variance

Variate: number_of_flowers

Source of variation d.f.	s	6. S .	m.s.	v.r. F pr.
Rep stratum	5	4.903	0.981	0.56
Rep.*Units* stratum Treatment_no Residual	11 55	340.486 95.597		
Total	71	440.986		

Message: the following units have large residuals.

Rep 4 *units* 5	-3.4	s.e. 1.15
Rep 4 *units* 10	3.1	s.e. 1.15

Tables of means

Variate: number_of_flowers

Grand mean 2.01

Treatment	1	2	3	4	5	6	7
	1.17	0.83	1.5	1.5	0.33	1.17	0.33
Treatment	8	9	10	11	12		
-	0.17	0.17	6.33	5	5.67		

Least significant differences of means (5% level)

Table	Treatment_no
rep.	6
d.f.	55
l.s.d.	1.525

Table 3. Above ground fresh weight

									(9)	in weight	giowar nos	Above ground §
												Treatment
12	11	10	9	8	7	6	5	4	3	2	1	number
14.79	14.65	14.43	4.67	4.26	6.48	8.65	5.90	9.06	8.63	6.07	9.61	Values
14.46	14.92	14.44	3.48	4.39	4.43	7.48	7.00	8.17	6.57	5.45	8.61	
16.08	15.20	17.39	4.09	3.86	4.51	8.06	5.50	7.36	9.00	5.82	6.49	
16.30	10.93	15.59	5.00	4.20	4.17	6.84	6.00	9.06	10.86	7.87	12.45	
13.79	12.53	21.12	4.28	3.48	5.17	7.68	6.14	6.95	6.74	6.84	6.94	
14.68	11.41	13.89	4.03	3.67	4.18	8.00	6.75	7.80	8.13	5.86	6.72	
15.02	13.27	16.14	4.26	3.98	4.82	7.79	6.22	8.07	8.32	6.32	8.47	Average
_	15.20 10.93 12.53 11.41	17.39 15.59 21.12 13.89	4.09 5.00 4.28 4.03	3.86 4.20 3.48 3.67	4.51 4.17 5.17 4.18	8.06 6.84 7.68 8.00	5.50 6.00 6.14 6.75	7.36 9.06 6.95 7.80	9.00 10.86 6.74 8.13	5.82 7.87 6.84 5.86	6.49 12.45 6.94 6.72	Average

Above ground growth fresh weight (g)

Analysis of variance

Variate: fresh_weight

Source of variation d.f.		S.S.	m.s.	v.r. F pr.
Rep stratum	5	11.106	2.221	1.16
Rep.*Units* stratum Treatment_no Residual	11 55	1117.906 105.323		
Total	71	1234.336		

Message: the following units have large residuals.

Rep 4 *units* 5	-2.89	s.e. 1.21
Rep 4 *units* 7	3.43	s.e. 1.21
Rep 5 *units* 4	5.06	s.e. 1.21

Tables of means

Variate: fresh_weight

Grand mean 8.56

Treatment_					5		
	8.47	6.32	8.32	8.07	6.21	1.18	4.82
Treatment_	8	9	10	11	12		
	3.98	4.26	16.14	13.27	15.02		

Least significant differences of means (5% level)

Table	Treatment_no
rep.	6
d.f.	55
l.s.d.	1.601

Appendix 2. 2021/2022 autumn winter leaf tissue and growing media laboratory analysis

		Crowing			RESULTS (are expressed as mg/l)														
Treatmen	t Feed	Growing media	Irrigation																
number	code	type	code	PH	NH4	NO3	AI	в	Ca	Cu	Fe	к	Mg	Mn	Мо	Na	Р	s	Zn
1	L	SA	IA	6.42	43.49	6.65	0.13	2.88	525.1	0.7	1.93	3597	1013.8	25.88	0.25	434.3	456.8	277.8	7.05
2	L	SB	IA	6.52	8.26	26.84	0.14	2.75	438.5	0.71	1.86	4736	714.44	31.34	0.24	222.5	470.2	286.2	7.63
3	L	SC	IA	6.50	47.26	67.72	0.15	2.61	361.9	0.67	1.71	5299	548.23	16.22	0.19	298.1	662.1	227.7	6.57
4	L	SA	IA	6.41	45.48	7.49	0.14	2.98	547.7	0.64	1.92	3609	1020.4	26.62	0.21	386.2	442.7	267.3	6.46
5	L	SB	IA	6.48	39.34	0.86	0.23	2.59	474.9	0.62	1.96	4099	749.03	36.93	0.2	273.6	364.7	266.2	7.04
6	L	SC	IA	6.55	42.87	7.15	0.18	2.49	388.2	0.61	1.82	5347	558.3	18.52	0.2	271	620.9	238.3	6.44
7	L	SA	IC	6.50	28.29	4.12	0.32	2.9	613.7	0.45	1.55	3670	1056.6	42.9	0.32	759.5	153	209.3	7.57
8	L	SB	IC	6.51	29.50	3.15	0.25	2.89	461.2	0.43	1.43	4265	727.84	54.33	0.31	512.7	217.1	207.3	6.75
9	L	SC	IC	6.42	31.95	1.23	0.29	2.16	356.2	0.5	1.69	5073	551	28.47	0.3	639.4	372.1	160	5.78
10	CRF	SA	IC	6.38	55.43	339.73	0.26	2.83	603.9	0.58	1.83	5338	1109.5	32.11	0.15	331.4	477.1	315.7	6.08
11	CRF	SB	IC	6.39	47.20	141.39	0.13	2.68	411.1	0.49	1.68	4785	851.76	34.25	0.28	208.3	339	273.4	6.1
12	CRF	SC	IC	6.39	45.68	224.06	0.17	2.65	323.6	0.44	1.36	5343	586.33	14.33	0.12	356.6	439.2	232.5	5.44

 Table 1. Pansy leaf tissue SAP analysis sampled 06/01/2022

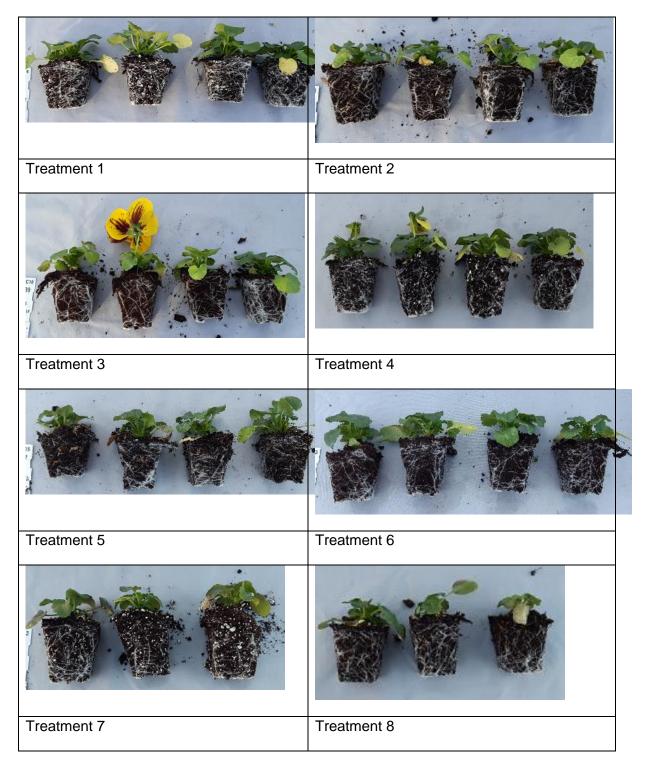
Table 2. Growing media analysis, sampled 06/01/2022

									RESULTS (are expressed as mg/l)														
		Growing	3		EC		dry	dry															
Treatment	t Feed	media	Irrigation		@20c	density	matter	density									total	S					
number	code	type	code	pН	(µS/cm)	(kg/m3)	(%)	(kg/m3)	CI	P	ĸ	Mg	Ca	Na	NH4	NO3	sol N	(SO4)	в	Cu	Mn	Zn	Fe
1	L	SA	IA	5.3	36	395	31.8	125.6	10.6	<1	3	3.4	4.9	20.6	1.8	1	2.8	66.1	0.05	<0.01	<0.01	<0.02	0.58
2	L	SB	IA	5	39	406	31.4	127.5	13.9	<1	3.3	3.8	5	20.3	1.2	0.8	2	66.5	0.06	<0.01	<0.01	<0.02	0.7
3	L	SC	IA	5.9	70	437	24.3	106.2	33.6	<1	54	0.8	2.6	31	0.9	1.1	2	87	0.13	<0.01	<0.01	0.03	1.37
4	L	SA	IA	5.3	29	406	28	113.7	8.9	<1	2	1.8	3.5	16.9	0.9	0.9	1.8	48	<0.05	<0.01	<0.01	<0.02	0.52
5	L	SB	IA	4.9	34	408	32	130.6	10.1	<1	2.6	2.5	3.8	17.6	0.7	0.8	1.5	53.9	<0.05	<0.01	<0.01	<0.02	0.57
6	L	SC	IA	6	61	466	22.9	106.7	32.9	<1	41.6	0.7	2.9	26	0.7	1	1.7	72.6	0.13	<0.01	<0.01	<0.02	1.07
7	L	SA	IC	5.2	58	394	29.8	117.4	42.9	<1	3.8	6.8	7.5	30.1	0.8	0.8	1.6	72.4	<0.05	<0.01	<0.01	<0.02	0.37
8	L	SB	IC	4.9	49	421	33.8	142.3	35.1	<1	2.9	5.4	6	25	0.6	0.8	1.5	56.7	<0.05	<0.01	0.01	<0.02	0.35
9	L	SC	IC	5.7	112	449	24.6	110.5	85.6	1	80	1.5	3.8	45.4	1.1	0.9	1.9	93.7	0.1	<0.01	<0.01	<0.02	0.86
10	CRF	SA	IC	4.8	265	412	29.5	121.5	37	5.6	59	42.5	54.6	51.1	7.5	32.8	40.3	366.5	0.35	0.04	0.13	0.1	1.56
11	CRF	SB	IC	4.5	255	383	35.2	134.8	19.2	4	52.8	37.8	40	40.7	14.4	20.6	35	360.2	0.34	0.03	0.18	0.07	2.22
12	CRF	SC	IC	5.1	276	410	29.5	120.9	38.2	5.2	153.1	20.6	26.7	64.2	2.4	32.5	34.9	317.5	0.28	0.04	0.04	0.05	2.32

Table 3. Growing media analysis for EC

Growing media EC ($\mu\text{S/cm})$ readings taken by SME

e.e.u.g.	Card To (hour		.ge tanten a	,											
		Treatment number													
Date	Temp (°C)	1	2	3	4	5	6	7	8	9	10	11	12		
09/11/202	1 22.5	131	140	234	159	184	222	135	169	253	350	248	366		
16/11/202	1 16.2	108.7	106.2	208	93.6	80.4	136.7	169.2	156.4	242	368	315	464		
25/11/202	1 13.2	88.8	109.1	203	83.9	139.9	219	312	202	261	789	675	457		
01/12/202	1 11.6	106	175	277	111	259	227	158	144	203	543	363	541		
08/12/202	1 10.5	110.8	120.9	241	111.8	152.1	214	174.8	190.6	335	688	497	586		
16/12/202	1 14.5	165.1	166.3	216	95.2	128.6	199.1	207	253	361	845	415	596		
23/12/202	1 12	150.9	362	267	152.9	148.9	244	269	415	544	762	591	702		


Table 4. Growing media analysis for pH

Growing	media	pН	readings	taken	by SME
			-		

							Treatmer	nt number					
Date	Temp (°C)	1	2	3	4	5	6	7	8	9	10	11	12
09/11/2021	22.5	4.93	5.02	4.49	4.36	3.95	4.07	4.60	4.12	4.75	4.69	4.90	4.77
16/11/2021	16.2	4.20	4.18	4.51	4.25	4.13	4.41	4.93	4.55	4.82	4.42	4.15	4.28
25/11/2021	13.2	6.69	6.39	6.76	6.38	6.03	6.69	5.98	5.94	6.49	5.73	5.56	6.34
01/12/2021	11.6	6.52	6.19	6.48	6.31	5.78	6.82	6.27	6.05	6.58	5.89	5.63	6.08
08/12/2021	10.5	6.99	6.12	7.01	6.95	6.51	7.57	6.3	6.12	6.55	5.94	5.86	6.18
16/12/2021	14.5	6.01	5.74	6.69	6.15	5.87	6.85	6.16	5.91	6.26	5.89	5.45	5.71
23/12/2021	12	5.77	5.41	5.93	5.48	5.18	6.02	6.13	5.92	6.84	5.74	5.53	5.87

Appendix 3. 2020/2021 autumn winter trial images

Images dated 06/01/2022

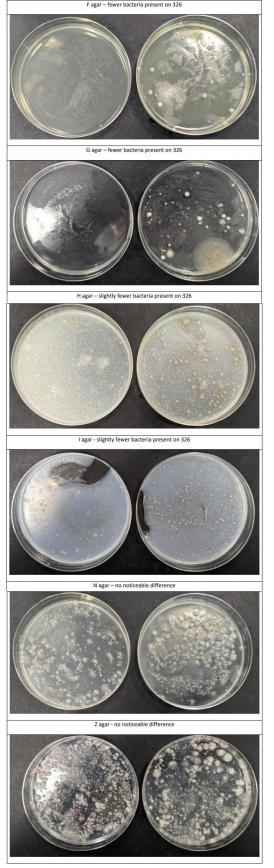

Appendix 4. Results of microbial activity assay on growing media

Table 1. Media	description	and	ingredients
----------------	-------------	-----	-------------

Agar code	А	F	G	Н	I	Ν	Z
description	Potato dextrose agar Distilled water	Psuedomon as F agar + additives Distilled	Sucrose Nutrient Agar with additives (SNA + A) Distilled water	mCS20ABN Distilled Water	FS agar Distilled Water	Malt agar with streptomycin Distilled water	Potato dextrose agar Distilled water
ngreaients	PDA powder	water Pseudomon as F agar	water Nutrient agar	Soya Peptone	K2HPO4	Oxoid technical agar	PDA powde
		Glycerol	Sucrose	Tryptone	KH2PO4	Holland & Barrett malt extract	·
		Cephalexin stock solution (8g/L)	Cephalexin stock solution (8g/L)	KH ₂ PO ₄	KNO3	Streptomycin solution	
		Boric acid stock solution (37.5g/L)	Boric acid stock solution (37.5g/L)	(NH ₄) ₂ HPO ₄	MgSO47H2 O		
				MgSO ₄ 7H ₂ O	Yeast Extract Soluble		
				L-Glutamine	starch		
				L-Histadine Soluble starch	Agar Agar Methyl Green 1% aqueous solution		
				Agar Agar	Nystatin Sol ⁿ (100mg in 10ml 50% ethanol)		
				Neomycin Sol ^a (200mg in 10ml sterile distilled water)	D- Methionine Sol ⁿ (10mg in 10ml 50% ethanol)		
				Bacitracin Sol ^{<u>n</u> (500mg in 10ml 50% ethanol)}	Pyriodoxine HCI Sol ^{<u>n</u> (10mg in 10ml 50% ethanol)}		
				Nystatin Sol ⁿ (100mg in 10ml 50% ethanol)	Cephalexin Sol ⁿ (200mg in 10ml 50% ethanol)		
					Trimethropri m Sol ^ը (100mg in 10ml 70% ethanol)		

 Table 2. Images of plates 48 hours after inoculation at 28 °C, all images showing plates of unused growing media (left) compared with 9 week-old growing media (right).

 Fager-fewer bacteria present on 326

Introduction – Section 2. Improved Primula nutrition to reduce leaf edge scorch

Primula is a crop that is susceptible to marginal leaf necrosis which is frequently referred to as "leaf edge scorch". The cause of this is suspected to be related to nutrition but no evidence-based knowledge currently exists in the UK industry.

During the project scoping study little directly relevant investigation on this crop was found, although analogous work was identified on lettuce (Collier, G.F & Tibbitts, T.W. 1984) (and other leafy vegetables) and in poinsettia (Bierman et al 1990), both of which identify Ca as a factor in leaf edge burn/scorch. Work on B (Hu, H. & Brown, P.H. 1997, Brown, P.H. & Shelp, B.J. 1997) also demonstrates young leaf necrosis as a symptom of deficiency, and necrosis of the mature leaf margin as a symptom of toxicity.

Absorption and movement of both Ca and B in the plant are affected by transpiration rates, with low levels being transported to areas of low transpiration. Uptake is also affected by the pH of the substrate, with high pH associated with B deficiency.

Experimental work was designed and carried out to look at B and Ca in conjunction with glasshouse environmental conditions, to see if either of these nutrients were the cause of the symptoms, and if control of humidity could alleviate symptoms.

A total of 4 trials were carried out in the period from 2019 to 2022. The trial work carried out in 2019/2020 winter is described in the document <u>POBOF 003 annual report 2019</u>, and work completed in summer of 2020 is described in the document <u>POBOF 003 annual report 2020</u>. In this work Ca was identified as a more likely cause, and work on how to improve Ca nutrition continued in the later trials.

Materials and methods

Between September 2020 and January 2021 an investigation was undertaken to see if the results obtained in summer 2020 were repeated under different seasonal conditions. The trial was grown in a glasshouse at NIAB's Cambridge trial site. The glasshouse was set to maintain a minimum temperature of 10 °C, no supplementary lighting was provided, and no shade screens were utilised. The trial was carried out on a tabletop bench fitted with Stal & Plast liners.

The test plant was Primula 'Cresendo® Orange', these were obtained from Ball Colegrave as plug plants and were received on 18/09/2020. Four days after receipt the plants were transplanted into Aeroplas 9 cm Low 5 deg. Pots using a standard peat based growing media mix, the specification of which can be found in Table 6.

Table 6. Growing media specification.

Brand	ICL M2
pH range	5.3-6.0
Particle size	0-10 mm
Conductivity	228-414 µs
Nutrient added	192N 98P 319K

Ca was supplied from high levels in the irrigation water and from the liming material used in the growing media. Additional Ca was added to eight treatments in the form of foliar applications of calcium nitrate (Ca(NO₃)₂). A liquid formulation of the compound containing 22.5% Ca, 15% N with no other micro or macronutrients was used and applied as a foliar feed at weekly intervals from 28/10/2020 at two rates, 1:500 (0.2%) & 1:1000 (0.1%).

To maintain all other nutrients to an acceptable level all plants were fed once per week with Omex feed O-Mix 21-7-21 + 1.6 MgO + TE (diluted into stock then 1:200) 5 ml diluted feed once a week.

Additional applications of the product 'Maxicrop plus Iron' (seaweed extract base with 2% sequestered iron) to combat Fe deficiency were made following the development of deficiency symptoms early in the trial. These were applied weekly to all treatments, for 4 weeks from 30/10/2020 at 5 ml in 1 l water.

Irrigation to the trial was applied manually overhead using a lance. The water supply used was mains supply for the area (hard water). The two water regimes used in the summer trial 2020 were repeated as detailed in Table 7.

	*										m	ng/I							μg/l
			nitrate														hardness	Alkalinity	dissolved
Sample	pН	EC µS/cm	N	SO4	В	CU	Mn	Zn	Fe	Cl	Ρ	К	Mg	Ca	Na	Carbonate	as CaCO3	as HCO3	Mo
Glasshouse																			
irrigation	7.7	611	9.8	30.8	0.03	< 0.01	< 0.01	< 0.01	< 0.01	39	0.8	2.7	3.74	116.6	16.7	<10	306.5	277	0.31
water																			

Table 7. Results of chemical analysis for the irrigation water at the Cambridge site.

*pH and conductivity measurements made at 20 °C.

All plants were allowed to drain freely following irrigation events, with no water recycling.

Table 8. Treatment list for 2020/2021 autumn/winter primula trial.

Treatment code	1	2	3	4	5	6	7	8	9	10	11	12
Water rate	High	High	Low	Low	High	High	Low	Low	High	High	Low	Low
Humidity level	low	high	low	high	low	high	low	high	low	high	low	high
Calcium foliar feed	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Foliar feed rate	-	-	-	-	1:500	1:500	1:500	1:500	1:1000	1:1000	1:1000	1:1000

Figure 10. Overview of trial set up; image dated 22/01/2021.

49 plants for each treatment were grown and arranged in single blocks, without any randomisation of the treatments. Plants were arranged in seven-by-seven row block, in a staggered arrangement, the edge plants of each block were excluded from the assessments.

The two humidity levels were created using different plant spacing regimes, these are detailed in Figure 11 below.

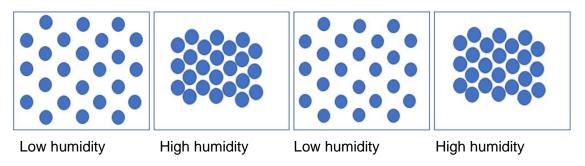


Figure 11. Illustration of plant spacing to create humidity treatments in trial design (not to scale)

The temperature and humidity were monitored at crop leaf height using Blue Maestro Tempo Disc[™] 3 in 1 Bluetooth environmental monitors.

Observations were made throughout the trial on the incidence of deficiency symptoms, and where 'Leaf-edge scorch' was observed the number of plants showing symptoms and the percentage of each plants affected were recorded and photographed.

Assessment of plant width in millimetres (mm) was made on two occasions during the trial, and at the final assessment there was a count of the number of flowers, and measurement of the fresh weight of above ground growth in g.

A sample of plant tissue and growing media from each treatment was also sent for laboratory analysis at the end of the trial. The material sent was a bulk sample taken from at least 10 randomly selected plants.

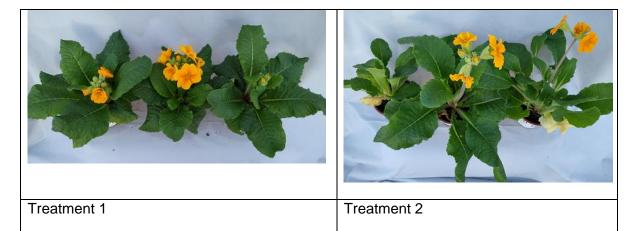
Between September 2021 and February 2022 this trial was repeated according to the same method to see if the results repeated. The trial set up, irrigation, and feed regime was the same but with additional treatments that provided an increased concentration of the foliar applications of $Ca(NO_3)_2$ at a dilution of 1:250. This resulted in a total of 16 treatments with all combinations of water rate, humidity level, and foliar feed rate, as shown in Table 9 below.

Table 9. Treatment list for 2021/2022 autumn/winter Primula trial.

Treatment code	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Water rate	High	High	Low	Low	High	High	Low	Low	High	High	Low	Low	High	High	Low	Low
Humidity level	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high
Ca foliar feed	No	No	No	No	Yes	Yes	Yes	Yes								
Foliar feed rate	-	-	-	-	1:250	1:250	1:250	1:250	1:500	1:500	1:500	1:500	1:1000	1:1000	1:1000	1:1000

In this trial the test plant was Primula 'Cresendo® Orange', these were obtained from Volmary Ltd as plug plants and were received on 06/10/2021. On 13/10/2021 the plants were transplanted into Aeroplas 9 cm Low 5 deg. Pots using a peat reduced growing media mix which contained 20% wood fibre. The change to peat reduced growing media is in line with changes experienced by growers.

The trial design was unchanged apart from the inclusion of additional treatments, and the observations remained the same, but plant width was only observed at the end of the trial.


Figure 12. Overview of trial set up; image dated 09/12/2021.

For both trials no chemical pest or disease treatment was undertaken, control of pests was via a program of biological control agents.

No plant growth regulator was applied during the trial.

Results

In the trial carried over winter 2020/2021 no symptoms of leaf edge scorch were observed in any of the treatments. All combinations of humidity, water, and feed treatment resulted in healthy plants. However, it was noticeable that under the higher humidity the plants produced had elongated, stretched leaves that were visually less appealing. This can be seen in Figure 13 below. Other trial images can be found in Appendix 7 and Appendix 11 of this report.

Treatment 3

Treatment 4

Treatment 5

Treatment 6

Treatment 7

Treatment 8

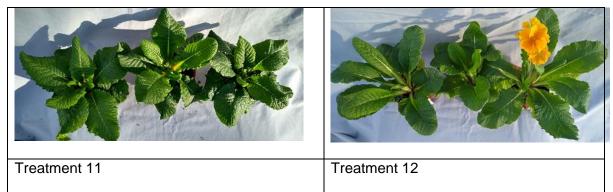


Figure 13. Images of 3 typical plants from each treatment at final assessment, dated 25/01/2021.

Although not the main aspect of the investigation it was noted from the results for the leaf tissue analysis that rates of N in the leaf tissue were lower in the higher humidity treatments, which correlates to the elongated, stretched leaves which in addition were observed to be paler green.

The results for plant fresh weight split the treatments according to water rate, with the lowest fresh weight results for the treatments with low water rates, and the higher water rate giving the heavier plants. Where water rate was high the level of humidity did not impact on the fresh weight, but where water rate was low, those plants grown under the low humidity were the lowest results for fresh weight.

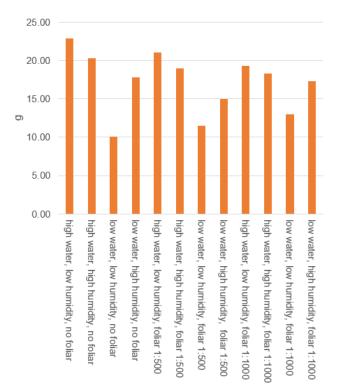


Figure 14. Graph with results for fresh weight of above ground growth (g) at final assessment (in treatment order 1 to 12 from left to right), observations dated 25/01/2021.

The application of $Ca(NO_3)_2$ did not have any impact on the fresh weight of the plant. The full results for other observations on the trial can be found in tables 1,2,3, and 4 of Appendix 5 of this report.

As the application of routine liquid fertiliser was the same for all treatments irrespective of the water rate, we can conclude that the difference is not due to the amount of nutrient applied. This is confirmed by the results of the growing media analysis, as shown in Table 10 below, the treatments with low water rate have higher NO_3 content at the end of the trial than those with the higher water rate. The full results for growing media analysis can be found in Table 1 of Appendix 6 of this report.

Treatment	1	2	3	4	5	6	7	8	9	10	11	12		
Water rate	High	High	Low	Low	High	High	Low	Low	High	High	Low	Low		
Humidity level	low	high	low	high	low	high	low	high	low	high	low	high		
Ca(NO ₃) ₂ foliar feed	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Foliar feed rate	-	-	-	-	1:500	1:500	1:500	1:500	1:1000	1:1000	1:1000	1:1000		
Leaf tissue a	e analysis (mg/l)													
Ca	348	523	282	424	326	367	234	379	302	274	196	423		
Growing medi	a analys	sis (mg/l)											
Ph	6.1	5.9	5.3	5.6	5.8	6	5.3	5.5	5.7	5.9	5.4	5.5		
Ca	18	13.7	50.4	26.7	25.7	12	85.3	41.3	29.4	12.6	52.6	26.8		
NH4	1.1	1.4	1.1	0	1.2	1.5	1.4	2.8	1.1	1.1	0	1.2		
NO3	1.3	9.1	37.5	14.2	2.4	8.7	62.5	42.4	5.4	10	21.7	16.1		

Table 10. Results of leaf tissue and growing media analysis for Ca, NH₄, and NO₃ content and Ph, samples taken on 25/01/2021

The full results for leaf tissue analysis can be found in Table 2 of Appendix 6 of this report.

When comparing the results for Ca content of the leaf tissue the analysis shows that the combination of low water and low humidity all produce tissue with low levels of Ca. Whereas the high humidity and high water rates are inconsistent in the Ca content of the leaf, with both high and low levels being observed.

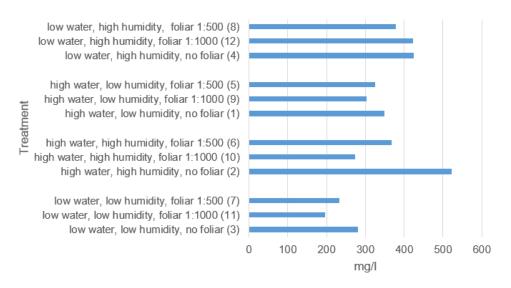


Figure 15. Results for Ca content of leaf tissue from samples dated 25/01/2021, grouped according to treatment variables of water rate and humidity.

The low humidity and low water combination of humidity and water all have low Ca content in the leaf, whereas the low humidity and high water are consistently in the mid-range for Ca. This is also true for the high humidity and low water rate, irrespective of the use of foliar feed. In relation to the use of $Ca(NO_3)_2$ as a foliar feed treatment in this trial, the results indicate

that there was no positive effect of using it at these concentrations. The results do appear to indicate that there was a negative impact from the lowest rate of $Ca(NO_3)_2$ foliar feed on the Ca levels in the leaf tissue, as in all cases these were lower than in the comparable low/humidity treatments where no foliar feed was applied.

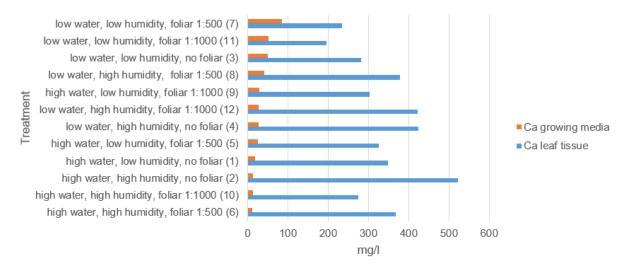
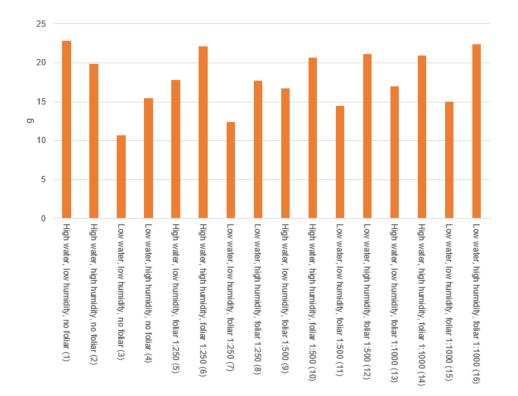
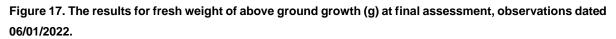




Figure 16. Results for Ca content of leaf tissue and growing media from samples dated 25/01/2021, ranked according to growing media levels.

When looking at the content of Ca in the growing media a clearer pattern is visible, the low water, low humidity treatments have the highest level of Ca remaining in the media and the high water, high humidity treatments have the lowest level of Ca remaining in the media. Although the same pattern is not identical in the leaf tissue analysis this would suggest that the plants are taking up more Ca in the high water, high humidity treatments, particularly as the high water treatments should have more Ca in the growing media from the hard water as it is applied in greater amounts.

There were no symptoms of leaf edge scorch observed in the winter 2021/2022 trial. The results for plant above ground fresh weight (g) as shown in Figure 17 gave results that mirror those seen in the previous trial. The low water, low humidity combination resulted in plants with the lowest fresh weight, and where no foliar $Ca(NO_3)_2$ was applied the highest fresh weight was in the plants with the high water, low humidity treatments. Overall, the application rate of the foliar $Ca(NO_3)_2$ has not impacted greatly on the final fresh weight of the plant, but in the high water treatments those plants subjected to high humidity conditions with foliar $Ca(NO_3)_2$ do appear to have higher fresh weight than the corresponding low humidity treatments.

The details of all trial observations can be found in Tables 1, 2, and 3 of Appendix 9 of the report.

When comparing results of the fresh weight of above ground growth with the N content of the leaf from the SAP analysis, in the high humidity conditions the total soluble N is at the highest levels, and it is at its highest where the foliar application of $Ca(NO_3)_2$ has been applied at the 1:250 dilution rate. As shown in Table 11, in all cases most of the N present is in the form of NO₃.

Table 11. Results of plant observations and leaf tissue analysis from samples taken on 06/01/2022.

Treatment	T1	T2	Т3	T4	Т5	Т6	T7	Т8	Т9	T10	T11	T12	T13	T14	T15	T16
Water rate	High	High	Low	Low	High	High	Low	Low	High	High	Low	Low	High	High	Low	Low
Humidity level	low	high	low	high	low	high	low	high	low	high	low	high	low	high	low	high
Ca(NO3)2 foliar feed	No	No	No	No	No	Yes	Yes	Yes	Yes							
Foliar feed rate	_	_	_	_	1:250	1:250	1:250	1:250	1:500	1:500	1:500	1:500	1:1000	1:1000	1:1000	1:1000
Plant observation	ations															
Average width (cm)	21.64	20.06	14.92	17.32	17.74	20.5	15.68	19.14	18.24	19.82	16.34	19.84	17.32	20.2	18.5	22.24
Average no. flowers	1.24	0.64	0.44	0.64	1.24	1.042	0.52	0.44	1.2	1.08	0.44	0.76	0.72	0.76	0.64	0.76
Average weight (g)	22.82	19.82	10.69	15.47	17.83	22.15	12.4	17.68	16.73	20.65	14.47	21.16	16.99	20.97	14.96	22.42
Tissue analy	sis(mg	/I)														
Ca	423	370	595	444	423	361	704	545	432	349	626	422	394	453	534	301
NH4	28.26	32.1	36.08	46.25	45.96	37.36	42.02	48.65	47.53	38.78	59.09	49.71	67.03	68.36	75.03	62.54
NO3	121.2	251.9	51.82	396.2	179.9	245.2	128.4	504.7	100.4	169.5	114.2	419.1	80.34	247.1	225	360.42
Total sol. N	149.4	284	87.9	442.4	225.8	282.6	170.4	553.4	147.9	208.3	173.3	468.8	147.4	315.5	300	422.96

The full results from the leaf tissue analysis are contained in Appendix 10 of the report.

The analysis results for Ca content of the leaf tissue show that all treatments have acceptable levels present. The highest levels are found in the low water, low humidity treatments, and the highest level overall is in this combination with the $Ca(NO_3)_2$ foliar feed at the 1:250 dilution rate. The lowest levels of Ca are seen in the treatment with low water and high humidity, followed by high water and high humidity.

When considering the impact of the foliar application of $Ca(NO_3)_2$, where there is high water rate and low humidity, additional foliar feeding has little impact on the level of Ca in the leaf tissue. Where the water rate is lower, the $Ca(NO_3)_2$ foliar application does appear to have an impact but only at the highest concentration, the lower concentrations of 1:500 and 1:1000 have no impact on the Ca level in the leaf tissue.

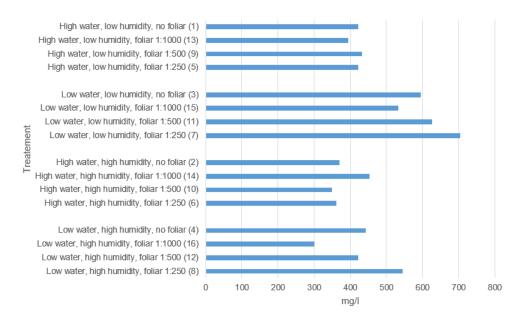


Figure 18. Results for Ca in leaf tissue from SAP analysis (mg/l), samples taken 06/01/2022.

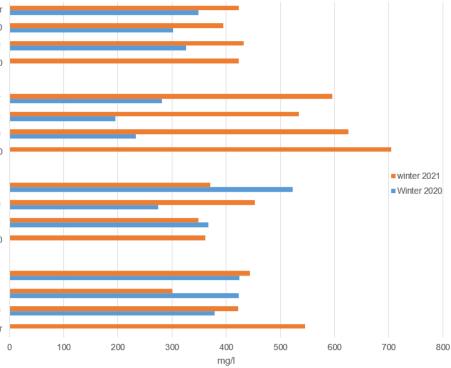
The response to the lower rates of foliar application of $Ca(NO_3)_2$ has not been consistent in one instance, under the high water, high humidity conditions the 1:1000 dilution rate has the greatest amount of Ca in the leaf tissue. In the other rates in this treatment combination of water and humidity, the pattern of response to application of Ca(NO_3)_2 has been the same as the other combinations.

In both the 2020 and 2021 trials symptoms of Fe deficiency were observed. Whilst not the main part of this study the application of foliar sequestered Fe, as described in the method, was successful in removing the symptoms of this deficiency.

Discussion

As there have been no symptoms of leaf edge scorch observed over the 2 years of trials in 2020 and 2021, it would suggest that all the levels of Ca in the trial have been sufficient to fulfil the plant requirement in the cell walls of the leaf margins and growing points.

The results of the leaf tissue analysis for Ca over the 2 years of winter trials described in the results are in some respects contradictory, when considering the levels relative to the humidity level and water rate combinations. As shown in the graph in Figure 18, the combination of low water and low humidity had the lowest levels of Ca in the 2020 trial and conversely the highest levels in the 2021 trial. Although the 2 trials were grown at the same period of the year, the values for temperature and humidity in the glasshouses will not have been exactly the same. The average temperature and humidity in all treatments were lower


in the 2021 trial than in 2020 trial, see Appendix 8 and Appendix 12 for data, and this is a potential cause of the differences. It can be hypothesised that there is a greater benefit in reducing humidity when temperatures are lower to compensate for the lower transpiration rate and consequently lower movement of Ca, but further work would be needed to confirm this.

high water, low humidity, no foliar high water, low humidity, foliar 1:1000 high water, low humidity, foliar 1:500 high water, low humidity, foliar 1:250

low water, low humidity, no foliar low water, low humidity, foliar 1:1000 low water, low humidity, foliar 1:500 low water, low humidity, foliar 1:250

high water, high humidity, no foliar high water, high humidity, foliar 1:1000 high water, high humidity, foliar 1:500 high water, high humidity, foliar 1:250

low water, high humidity, no foliar low water, high humidity, foliar 1:1000 low water, high humidity, foliar 1:500 low water, high humidity, foliar

Figure 19. Comparison of Ca content of leaf tissue over 2 years of trial, from samples dated 25/01/2021 and 06/01/2022.

What is more consistent is the response to the low rate application of $Ca(NO_3)_2$. At worst these appear to have a negative impact on the on the Ca level in the leaf, and generally they have no impact at all. As only one year of data exists for the increase dilution rate of 1:250, it is not possible to make a recommendation for its use in the situation but there does appear to be a beneficial impact at this concentration.

During the 2020 trial year samples of growing media and leaf tissue were taken from a nursery growing primula on the south coast of England, these samples were from a grower who had seen issues with Leaf Edge Scorch on their crop. Tabulated below are a comparison of the results of the analysis with the average values obtained from the trial at NIAB where no symptoms had been observed.

Table	12. Comparison of growin	g media analysis nom nursery with symptomatic plants and 2020 winter
trial a	verage.	

						mg/l														
																		density	drv	dry density
				total										S			EC			(kg/m3
Sample	pH	NH4	NO3	sol N	Р	K	Ca	В	Mg	Cu	Fe	Mn	Zn	(SO4)	Na	CI	@20c)	%)
Nursery	6.5	1.1	1.4	2.5	22.2	125.5	4.2	0.46	1.7	0.18	1.04	0.02	0.35	153.3	49.1	36.5	139	285	35.3	100.6
Trial																				
average	5.67	1.39	19.28	20.68	20.83	21.25	32.88	0.35	34.98	0.01	0.53	0.20	0.15	176.14	27.76	17.11	135.42	599.67	44.77	145.50

atic plants and 2020 winter

Some differences were observed in pH, Ca, sodium (Na), Cl, and K, but the latter is not unexpected as the nursery adopts a high K feed in the later stages of the crop. However, none of the values from the nursery sample are of particular concern.

When values from the leaf tissue analysis are compared there are greater differences between NIAB grown material and the grower samples. The level of Ca in the leaf tissue from the nursery sample is higher than in the trials, so it would seem unlikely that the cause of the necrotic leaf tissue is a deficiency of Ca. While the Na in the nursery growing media sample was slightly elevated in comparison with the trial, the Na level in the leaf tissue is substantially higher in the nursery sample by over 900 mg/l. The same order of difference was observed in the values for Cl in the growing media, however standard tissue analysis does not give results for Cl so we do not know if this has also accumulated in the leaf tissue.

 Table 18. Comparison of leaf tissue analysis from nursery with symptomatic plants and 2020 winter trial average.

								mg/l									
Sample	pН	NH ₄	NO_3	total sol N	Р	К	Ca	В	Mg	Cu	Fe	Mn	Zn	S	Na	Мо	AI
Nursery							594	2.72	358.53	0.81	2.36	6.62	7.45	341.14	1085.32	0.63	0.34
Trial																	
average	6.91	31.15	410.54	441.69	412.62	5034.62	339.86	2.97	560.17	0.38	1.05	3.98	2.77	191.87	144.53	0.12	0.12

The other difference of note is the level of K which is over 2000 mg/l higher in the nursery sample which could be because of the high proportion of coir in the growing media used which is 70% mix, as well as the high K feed. Also, the difference in the NH₄:NO₃ ratio where the nursery sample has a much higher proportion of NH₄. An excessive amount of K does not appear to have toxic effects, other than to limit the uptake of other nutrient most notably N, and Ca which in this situation would also be a concern. Although K is high in this nursery sample the N and Ca appear unaffected suggesting the levels of K are not detrimental.

It is likely from these results that the cause of the leaf tissue necrosis is not the same as had observed in the experimental trials where symptoms have been seen. The leaf tissue analysis from the grower suggest that this is the result of nutrient toxicity rather than a deficiency; Na is known for its toxic effects and the symptoms are chlorosis of the leaf margin which progresses to necrosis which is the same symptoms that have been investigated in the trial, but also this has similarities to Fe deficiency in its early stages. At no point in our investigation have we observed level of Na that are comparable to those from the leaf tissue at the nursery even where symptoms have been observed, so it can be concluded that these are from different sources.

A potential source of issues is the irrigation water, at the nursery this is stored collect water in winter and spring, and blended mains and stored collected water during summer and autumn.

In Table 14. there is a comparison of water samples taken at NIAB over several years of trial work, and a sample of irrigation water from the nursery taken in May 2018.

										mg/l							Alkalinity
SAMPLE	pН	EC µS/cm	Nitrate N	CI	SO4	Ρ	в	к	Cu	Mg	Mn	Са	Zn	Na	Fe	Carbonate	as HCO3
Glasshouse irrigation water 2022	7.7	618	9.8	41.9	31	1	0.03	2.5	<0.01	3.87	<0.01	113	<0.01	16.1	<0.01	<10	296
Glasshouse irrigation water 2021	7.7	611	9.8	39	30.8	0.8	0.03	2.7	<0.01	3.74	<0.01	117	<0.01	16.7	<0.01	<10	277
Glasshouse irrigation water 2019	7.5	602	8.8	32.4	28.5	1.1	0.03	2.8	<0.01	3.6	<0.01	118	0.01	12	<0.01	<10	272
Nursery irrigation water May 18	7.6	311	5	15.7	12.5	0.3	<0.01	1.3	0.01	2.06	<0.01	57.1	0.35	7.6	<0.01	<10	150

 Table 14. Comparison of analysis of NIAB irrigation water samples and a nursery irrigation sample.

The analysis gives no obvious cause for the very high levels of Na in the leaf tissue at the nursery site. Other nutrients fall within a similar range to the values at NIAB or are slightly lower which is not unexpected as the nursery uses collected rainwater. This is the likely reason for lower Ca and hardness in the nursery water sample, but when looking at the leaf tissue analysis low Ca was not identified as being deficient.

The two trials reported on here have been carried out over winter, but the trial earlier in 2020 was during the summer to replicate primula production for the early autumn market. The nursery which supplied material for analysis had described symptoms of leaf edge scorch during summer, so it is also important to consider if the symptoms were from other environmental conditions. In investigating Ca nutrition, the rate of water application has been considered in relation to root pressure as well as the role of transpiration, both of which effect nutrient movement. Transpiration has other functions; one is to reduce leaf temperature by the vaporisation of water at the leaf cell level. The leaf temperature is raised by solar radiation

and if too high this can impair photosynthesis; where light and sufficient water is available the loss of water through the leaf stomata will cool the leaf tissue. Where plants are under stress from drought, leaf stomata close and transpiration stops, so plants that suffer from a lack of water often exhibit symptoms of thermal stress due to the high leaf temperature the symptoms of which can be necrosis of leaf tissue.

Figure 20. Comparison of different possible causes of necrotic leaf margins, (from left to right) potential nutrient toxicity (possibly Na), thermal stress and potential nutrient deficiency (Ca).

It is possible then that "Leaf Edge Scorch" as described by growers has multiple causes, not just one and in trying to resolve the issue the whole growing environment needs to be considered taking into consideration nutrition, water supply and environment.

Conclusions

- Multiple causes of leaf necrotic tissue have been identified, not all appear to be related to Ca nutrition.
- Reduction of humidity at crop height can increase Ca in leaf tissue, the response is not always consistent but reduction in humidity should be considered as part of a best practice approach to water management and the reduction of disease in a crop.
- Foliar applications at weekly interval of Ca(NO₃)₂ at a dilution rate of 1:250 appear to be a beneficial for increasing Ca levels in leaf tissue during winter months.
- Water stress can reduce levels of Ca in the plant but can also be the cause of drought induced thermal stress resulting in necrotic leaf tissue.
- Using a liquid feed once a week with NPK ratio of 21-7-21 + 1.6 MgO + TE made up to a stock solution of 1 kg/10 I and diluted 1:200, is a successful delivery method for autumn winter production.
- To reverse the symptoms of Fe deficiency in the leaves of Primula, apply foliar applications of Fe in the form of a 2% sequestered product at 5 ml in 1 l water at weekly intervals for 4 weeks.

Knowledge and Technology Transfer

ICL Hortscience online event 2021 – video presentation – The effect of calcium nutrition in leaf edge scorch

AHDB Knowledge Library pages:

Leaf edge scorch in Primula

How to prevent leaf edge scorch in Primula

The possible causes of iron deficiency in petunia and primula

Glossary

Macronutrient are types of elements found in fertilisers that a plant requires in large amounts (compared to others) for normal growth. Macronutrients are N, P, K, Mg, Ca & S.

Micronutrients or trace elements are essential elements that are required in smaller amounts than that of macronutrients. Micronutrients are Fe, Mn, B, Mo, Cu & Zn.

Photosynthesis is the process by which green plants, algae and some microbes convert light energy, carbon dioxide and water into energy (glucose) and oxygen. Photosynthesis occurs within the cells chloroplasts and is directly affected by light intensity, carbon dioxide concentration, available water, temperature and the availability of essential nutrients like Mg.

References

Bierman, P. M., Rosen, C. J. & Wilkins, H. F. (1990). Leaf Edge Burn and Axillary Shoot Growth of Vegetative Poinsettia Plants: Influence of Calcium, Nitrogen Form, and Molybdenum, *Journal of the American Society for Horticultural Science jashs*, 115(1): 73-78.

Collier, G.F. & Tibbitts, T.W. (1984). Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce. *Journal of the American Society for Horticultural Science*. American Society for Horticultural Science. 109: 128-31.

Hu, H. & Brown, P.H. (1997) Absorption of boron by plant roots. *Plant and Soil* 193: 49. Brown, P.H. & Shelp, B.J. (1997) Boron mobility in plants. *Plant and Soil* 193: 85.

Appendices

Appendix 5. 2020/2021 autumn winter trial data

Table 1. Plant width at trial mid-point Plant width (mm) 30/11/2020

Treatment	

rreatment												
number	1	2	3	4	5	6	7	8	9	10	11	12
Values	126	142	94	118	102	126	98	110	120	115	90	116
	135	152	99	123	130	128	98	125	122	138	109	125
	136	153	105	132	135	146	104	125	122	141	111	140
	137	153	105	132	136	155	111	131	123	148	112	140
	141	155	105	133	137	158	117	132	124	148	116	142
	142	162	110	135	142	167	118	132	125	159	117	144
	142	167	110	140	145	173	119	132	142	174	117	151
	145	168	113	146	148	176	122	134	142	176	121	155
	146	170	114	147	150	179	122	140	146	180	121	156
	150	170	116	147	150	180	123	143	147	182	123	156
	151	172	122	151	151	180	124	144	148	185	125	156
	155	175	127	152	152	185	124	144	149	187	126	160
	156	180	131	152	153	186	126	154	150	190	127	160
	160	182	131	153	158	187	127	155	152	191	128	161
	160	182	132	156	159	190	127	155	153	192	131	161
	161	183	137	163	160	190	127	157	153	195	132	161
	162	185	138	168	162	200	130	160	153	196	136	164
	162	196	138	170	164	215	132	160	155	202	136	170
	163	198	142	176	166	220	132	164	156	210	136	172
	165	200	143	178	168	225	136	164	158	211	137	175
	166	201	144	179	172		137	167	160	215	145	176
	167	215	146	184	177		137	169	160	215	146	185
	176	215	147	187	177		141	174	162	216	148	196
	183	225	148	197	178		145	180	166	232	151	198
	191	227	163	227	184		149	200	172		156	235

Average 155.1 181.1 126.4 157.8 154.2 178.3 125 150 146.4 183.3 127.9 162.2

Table 2. Plant width at final assessment

Plant width (mm) 25/01/2021

Treatment												
number	1	2	3	4	5	6	7	8	9	10	11	12
Values	219	198	132	155	179	149	135	135	152	181	156	145
	234	212	135	176	185	195	140	156	164	204	160	175
	219	218	149	185	186	215	141	175	170	225	160	210
	204	224	150	202	192	229	142	178	175	239	161	215
	219	235	151	206	194	236	148	178	198	244	165	225
	229	236	151	225	195	236	150	182	199	246	170	225
	201	238	152	225	198	239	150	186	199	254	172	225
	225	245	152	229	199	259	155	208	199	254	175	245
	180	256	152	230	204	265	159	209	200	261	175	250
	199	264	154	240	205	274	161	218	202	276	179	265
	210	264	155	241	206	279	161	219	204	282	180	265
	188	269	156	241	209	284	165	219	204	282	184	265
	215	275	156	245	210	287	166	235	206	283	185	270
	192	284	157	245	213	296	168	248	209	285	185	270
	256	285	158	280	214	299	169	250	213	287	192	280
	215	286	159	285	216	300	171	252	221	292	192	290
	238	298	161	287	216	322	171	259	224	299	195	290
	244	324	164	291	219	334	175	260	226	309	195	300
	224	325	165	291	225	335	175	270	229	317	197	300
	220	329	166	300	226	365	175	280	229	317	200	305
	229	329	171	310	229		178	280	230	325	200	305
	218	336	178	316	231		189	281	234	325	205	310
	291	344	178	318	232		192	285	234	332	205	320
	205	364	178	320	234		196	320	254	334	205	340
	186	375	190	325	241		205		259	348	210	390
									275			
									284			
									295			
									298			
									324			
Average	218	281	159	255	210	270	165	228	224	280	184	267

Table 3. Flower number

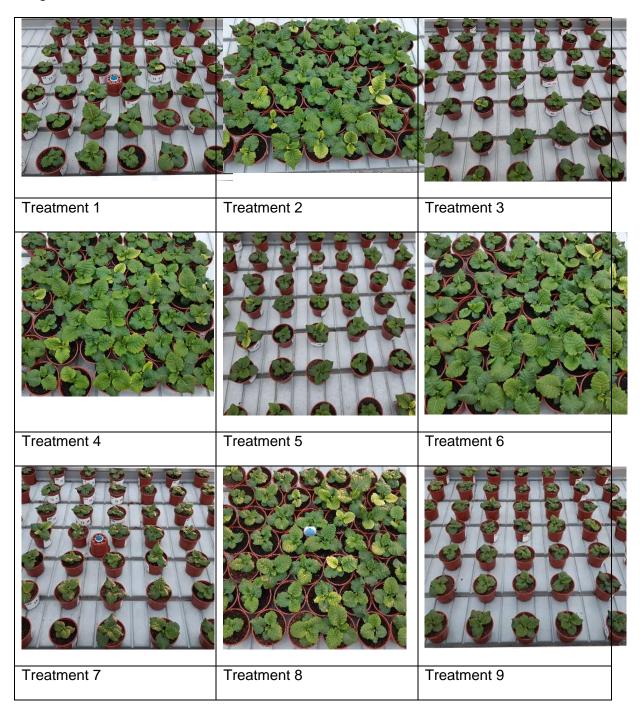
Flower number Treatment	1 25/01. 	/2021										
number	1	2	3	4	5	6	7	8	9	10	11	12
Values	10	0	6	0	12	0	6	0	5	3	1	0
	11	0	6	0	12	2	7	0	5	3	3	0
	16	4	9	2	14	3	8	3	6	4	5	3
	16	7	9	8	14	5	8	6	11	6	5	4
	17	7	9	8	15	6	8	6	11	6	7	5
	18	7	10	8	15	7	9	6	12	8	7	5
	18	8	10	9	21	8	9	6	12	8	7	5
	18	8	10	9	21	8	9	7	12	8	8	6
	19	8	10	10	21	8	9	8	13	8	8	6
	19	8	10	10	21	10	9	9	13	8	9	7
	20	9	11	10	22	12	10	9	13	9	10	7
	20	9	11	10	22	13	10	10	13	10	10	8
	20	10	11	10	22	13	10	10	13	10	10	9
	20	10	11	10	23	13	10	10	13	10	10	9
	22	11	12	11	23	13	11	10	13	10	11	9
	22	12	12	11	25	15	11	11	13	10	11	10
	24	16	12	11	26	16	11	11	13	10	11	10
	24	17	12	11	26	19	11	11	14	11	11	10
	25	17	12	11	27	20	11	11	14	11	12	11
	25	17	12	11	28	24	12	12	14	11	12	11
	25	19	12	12	29		12	12	14	12	12	11
	26	20	13	12	30		12	12	14	13	13	12
	26	20	13	13	30		15	13	14	14	14	12
	30	20	15	14	32		20	13	15	15	16	13
	31	22	16	27	36		22	14	15	16	23	14
									16			
									17			
									23			
									23			
									25			
Average	20.9	11.4	11	9.92	22.7	10.8	10.8	8.8	13.6	9.36	9.84	7.88
	1											

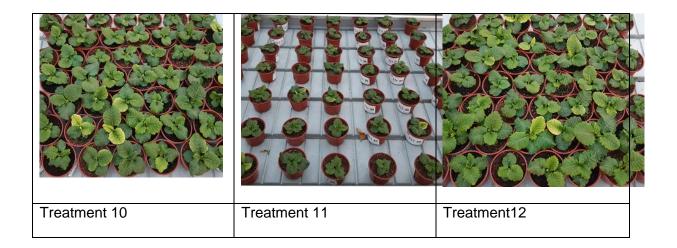
Table 4. Fresh weight of above ground growth

Fresh weight	of above g	round gi	rowth (g)	25/01/2	2021							
number	1	2	3	4	5	6	7	8	9	10	11	12
Values	14.76	5.16	7.46	5.8	12.48	5.66	7.54	5.48	12.55	6.76	9.07	3.76
	18.16	8.35	8.15	8.57	15	9.44	8.3	9.02	14.08	8.28	9.9	6.49
	19.68	8.63	8.15	9.28	16.15	10.19	8.91	9.41	14.7	11.39	11.07	9.38
	20.35	11.52	8.51	10.05	16.5	10.32	9.55	9.48	16.46	11.56	11.24	9.85
	20.48	12.21	8.89	11.6	17.61	12	9.83	9.5	16.59	12.22	11.62	10.35
	20.6	12.39	8.95	12.67	18.06	13	10.19	11.84	16.67	14.05	11.73	12.27
	20.79	12.49	9.04	14.08	18.69	15.7	10.28	12.46	17	15.17	11.81	13.25
	21.26	12.69	9.23	14.76	18.77	16.78	10.48	13	17.43	15.5	11.98	13.89
	21.4	14.09	9.56	14.92	18.79	17.93	10.84	13.68	17.49	16.44	12.37	15.13
	21.54	15.91	9.62	15.87	19.05	19.36	10.88	14.79	18.09	16.59	12.56	15.32
	22.24	16.92	9.67	17	20	21.94	11	15.09	18.22	16.79	12.66	15.63
	22.56	17.74	9.96	17.26	20.13	22.29	11.03	15.16	18.47	18.76	12.67	16.42
	23	19.26	10	17.89	20.31	22.38	11.43	15.63	18.66	19.04	12.76	16.48
	23.11	20.15	10.16	18.46	20.51	24.13	11.45	16.1	18.7	19.13	13.24	17.13
	23.41	21.85	10.17	18.94	21.45	24.14	11.52	16.46	18.97	19.55	13.32	18.08
	23.5	23.31	10.42	19.03	21.53	25.54	11.68	16.69	19.09	19.7	13.75	19.73
	23.79	26.25	10.48	20.79	22.05	26.94	11.97	17.11	19.12	20.44	13.78	19.9
	23.96	26.63	10.76	21.11	24.14	28.55	12	17.25	19.38	20.67	13.8	21.61
	24.46	27.44	10.84	21.38	24.37	34.53	12.88	17.34	19.42	21.3	13.86	21.83
	24.87	27.48	11.16	21.64	24.81		13.36	17.6	19.51	22.11	13.87	22.78
	25.42	28.35	11.16	22	25.08		13.87	18.49	20.07	24.06	14.38	24
	26.2	31.58	11.96	23.82	26.47		14.06	19.17	20.39	25.22	14.73	25.26
	27.1	32.62	12.51	24	26.68		14.2	19.78	20.57	26.22	14.84	26.62
	28.52	36.88	12.97	27.67	28.87		14.78	19.82	21	28.11	14.96	28.53
	29.62	38.14	13.09	35.58	29.24		15.53	24.43	21.4	28.68	15.54	29.17
									22.24		15.91	
	1								22.67			
									25.21			
									26.16			
									27.92			
Average	22.83	20.32	10.11	17.77	21.07	18.99	11.5	14.99	19.27	18.31	12.98	17.31

Appendix 6. 2020/2021 autumn winter leaf tissue and growing media laboratory analysis

	Desc	ription of t	reatment												RESU	LTS (r	ng/l)						
			Calcium			density		dry															
Treatment	t		nitrate		EC	(kg/m3	dry	density									total	S					
number	water	humidity	rate	pН	@20c)	matter	(kg/m3	CI	Р	K	Mg	Ca	Na	NH4	NO3	sol N	(SO4)	В	Cu	Mn	Zn	Fe
T1	High	low	none	6.1	67	713	22.4	159.7	17	10.4	8.8	11.3	18	20.8	1.1	1.3	2.5	89	0.44	<0.01	<0.01	0.15	0.32
T2	High	high	none	5.9	59	699	22.3	155.9	16.2	6.5	12.7	9.2	13.7	19.4	1.4	9.1	10.5	50.4	0.37	<0.01	<0.01	0.11	0.26
T3	Low	low	none	5.3	234	370	40.7	150.6	27.1	34.1	47.4	67.6	50.4	39.3	1.1	37.5	38.6	312.8	0.31	<0.01	0.31	0.12	0.97
T4	Low	high	none	5.6	106	616	24.8	152.8	13	14.2	13.2	23.7	26.7	24.6	<0.6	14.2	16.6	140.3	0.47	<0.01	0.07	0.12	0.43
T5	High	low	1:500	5.8	94	533	27	143.9	11.8	14.9	6.1	23.3	25.7	20.6	1.2	2.4	3.5	155.4	0.34	<0.01	0.06	0.14	0.45
T6	High	high	1:500	6	55	688	22.5	154.8	17.2	6.2	11.3	6.3	12	21.5	1.5	8.7	10.2	40	0.31	<0.01	<0.01	0.13	0.28
T7	Low	low	1:500	5.3	350	389	35.7	138.9	32.3	60.2	57.2	114.9	85.3	44.9	1.4	62.5	63.9	484.8	0.36	0.01	0.56	0.25	1.2
T8	Low	high	1:500	5.5	179	679	23.6	60.2	12.9	24	34.4	42.3	41.3	33.5	2.8	42.4	45.2	177.3	0.3	0.01	0.16	0.17	0.45
Т9	High	low	1:1000	5.7	104	649	238	154.5	11.6	19.5	9.2	25.8	29.4	22	1.1	5.4	6.5	154.8	0.29	<0.01	0.06	0.15	0.43
T10	High	high	1:1000	5.9	59	726	23.3	169.2	13.7	6.6	13	7.1	12.6	19.5	1.1	10	11.2	37.1	0.3	<0.01	<0.01	0.11	0.22
T11	Low	low	1:1000	5.4	208	430	34.7	149.2	18.6	37.4	26.7	63.4	52.6	37.5	<0.6	21.7	22.3	329	0.33	<0.01	0.29	0.15	0.9
T12	Low	high	1:1000	5.5	110	704	22.2	156.3	13.9	15.9	15	24.9	26.8	29.5	1.2	16.1	17.2	142.8	0.43	<0.01	0.07	0.14	0.46


 Table 1. Growing media analysis, sampled 25/01/2021


Table 2. Primula leaf tissue SAP analysis sampled 25/01/2021

	Desc	ription of tre	eatment								RESU	LTS (mg/l)							
			Calcium																
Treatmen	t		nitrate																
number	water	humidity	rate	PH	NH4	NO3	AI	В	Са	Cu	Fe	К	Mg	Mn	Мо	Na	Р	S	Zn
T1	High	low	none	6.83	24.98	530.52	0.05	3.47	348.3	0.43	0.69	4397.21	521.18	3.04	0.22	139.91	361.48	112.74	2.25
T2	High	high	none	6.96	41.27	324.5	0.16	1.31	522.64	0.27	1.09	6542.06	868.46	7.85	0.13	244.3	501.63	375.34	3.04
Т3	Low	low	none	6.94	28.39	839.94	0.07	3.15	281.5	0.36	0.51	5607.07	513.74	3.55	0.1	105.52	392.22	139.14	2.12
Τ4	Low	high	none	6.78	19.81	50.19	0.12	3.06	424.29	0.31	1.12	3537.26	635.55	4.43	0.1	149.67	368.72	242.63	2.49
T5	High	low	1:500	6.88	27.18	485.8	0.07	3.41	326.04	0.41	0.88	4539.62	444.66	2.94	0.13	123.19	345.68	143.12	2.62
Т6	High	high	1:500	7.04	46.74	267.03	0.16	2.41	367.41	0.35	1.48	5747.06	613.17	4.49	0.08	166.79	466.44	288.89	3.78
Τ7	Low	low	1:500	6.97	37.55	758.74	0.07	3.31	233.75	0.42	0.62	5892.21	430.29	2.87	0.07	114.24	447.21	137.59	2.57
Т8	Low	high	1:500	6.87	28.03	112.12	0.16	3.65	379.02	0.37	0.76	4638.52	662.26	4.49	0.07	149.16	440.6	249.22	2.93
Т9	High	low	1:1000	6.83	29.38	584.76	0.06	3.37	302.48	0.45	0.93	5211.15	529.75	3.13	0.07	147.86	429.85	125.73	2.51
T10	High	high	1:1000	7	37.97	314.41	0.16	2.25	274.13	0.25	1.2	5262.9	514.92	3.56	0.07	135.93	408.33	196.02	3.33
T11	Low	low	1:1000	6.9	29.05	442.84	0.11	3.03	195.69	0.35	0.78	4468.06	359.87	2.3	0.05	90.15	365.12	105.4	2.82
T12	Low	high	1:1000	6.86	23.44	215.61	0.28	3.21	423.09	0.56	2.53	4572.31	628.19	5.07	0.31	167.65	424.2	186.62	2.74

Appendix 7. 2020/2021 autumn winter trial images

Images dated 27/10/2020

Appendix 8. 2020/2021 autumn winter environmental data monitored at crop leaf height using Blue Maestro Tempo Disc[™] 3 in 1 Bluetooth environmental monitors

	Low water Low humidity	Low water High humidity	High water Low humidity	High water High humidity
Average temperature °C	11.5	10.9	11.0	13.9
Average humidity %	59.1	67.7	64.7	90.3

Appendix 9. 2021/2022 autumn winter trial data Table 1. Plant width

Plant width (mm) 15/02/2022

1															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
240	180	130	210	150	235	150	180	185	170	150	240	170	180	145	170
230	190	160	185	180	170	160	100	220	200	175	160	175	185	185	240
220	200	145	165	230	165	150	230	175	170	200	240	210	210	165	270
240	220	180	170	170	225	150	225	150	150	140	250	180	200	160	250
230	190	140	145	170	235	210	220	165	220	205	200	180	200	185	200
190	185	145	190	175	220	135	215	200	210	190	240	175	100	180	210
220	210	125	180	180	150	150	190	180	200	170	165	170	175	190	125
200	240	170	115	195	190	145	185	165	250	150	135	190	210	150	200
230	230	160	175	180	200	170	175	180	190	165	180	190	220	210	190
260	200	125	165	150	210	145	200	160	200	155	155	210	180	215	280
210	190	150	180	190	215	135	150	190	185	160	150	120	170	170	205
	190						190	200	210	160					260
230	180	175	185	160	250	130	155	180	200	170	185	190	260	190	280
240	155	130	170	180	200	180	190	190	220	165	210	165	210	170	240
	210	150	140	155	195	150	220	185	210	145	190	180	270	220	220
1	240	140	150	190	200	145	160	175	210	125	190	170	230	200	215
		140			190	160			140						250
															270
	215	150	135	150	180	160	195	160	205	130	210	115	195		260
	185	140	150	180	200	180	200	210	180	160	170	200	240		210
	220		210	190						180					200
															195
	180	180	175	180	180	145	210	205	200	150	215	175	150	195	190
		140												180	200
					0										230
216.4	200.6	149.2	173.2	177.4	196.8	156.8	191.4	182.4	198.2	163.4	198.4	173.2	202	185	222.4
	240 230 220 240 230 190 220 200 230 260 210 240 230	$\begin{array}{ccccc} 240 & 180 \\ 230 & 190 \\ 220 & 200 \\ 240 & 220 \\ 230 & 190 \\ 190 & 185 \\ 220 & 210 \\ 200 & 240 \\ 230 & 230 \\ 260 & 200 \\ 210 & 190 \\ 240 & 190 \\ 240 & 190 \\ 240 & 155 \\ 210 & 210 \\ 230 & 155 \\ 210 & 215 \\ 150 & 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

Table 2. Number of Flowers

Number of flowers 15/02/2022

Treatment																
number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Values	0	0	0	0	0	1	0	0	2	1	0	0	2	0	0	0
	4	1	2	0	3	0	0	0	2	0	1	0	3	0	0	0
	0	2	0	0	0	0	2	0	0	1	0	1	1	2	0	0
	3	0	0	0	0	3	0	0	0	0	0	4	1	1	0	1
	0	0	0	0	0	1	1	0	0	0	0	0	2	0	3	0
	1	0	0	0	1	1	0	0	2	5	0	0	0	0	0	0
	0	0	0	0	2	0	0	1	1	5	0	1	0	0	1	0
	1	0	0	0	1	0	0	0	1	3	0	0	0	2	0	0
	1	1	1	3	0	0	2	1	2	0	2	1	0	2	3	0
	6	2	0	0	2	0	0	0	0	0	2	0	0	1	0	2
	0	0	0	0	3	3	0	1	1	3	0	2	0	0	0	0
	1	0	1	0	0	3	0	0	0	0	0	4	1	0	0	2
	1	0	0	0	3	3	0	0	0	0	0	0	2	2	3	3
	2	0	1	1	1	2	0	0	1	0	0	0	0	1	1	0
	1	2	0	0	1	0	0	0	3	1	0	0	0	2	0	0
	4	2	0	3	0	5	0	0	1	3	0	0	1	1	1	2
	0	0	2	1	3	0	1	0	2	0	0	1	0	0	1	2
	0	0	0	0	3	0	3	2	0	1	0	0	2	1	0	0
	0	1	2	0	0	0	2	2	0	0	0	0	1	0	0	1
	0	0	0	0	3	0	0	2	0	0	3	0	0	0	0	2
	1	3	0	3	3	0	0	0	2	0	0	0	0	0	0	0
	3	0	2	1	1	0	0	0	4	0	0	0	1	0	1	0
	1	1	0	0	0	1	0	2	0	1	0	0	0	0	0	1
	0	1	0	2	0	2	0	0	3	2	2	0	1	2	1	1
	1	0	0	2	1		2	0	3	1	1	5	0	2	1	2
Average	1.24	0.64	0.44	0.64	1.24	1.042	0.52	0.44	1.2	1.08	0.44	0.76	0.72	0.76	0.64	0.76

Table 3. Weight of above ground growth

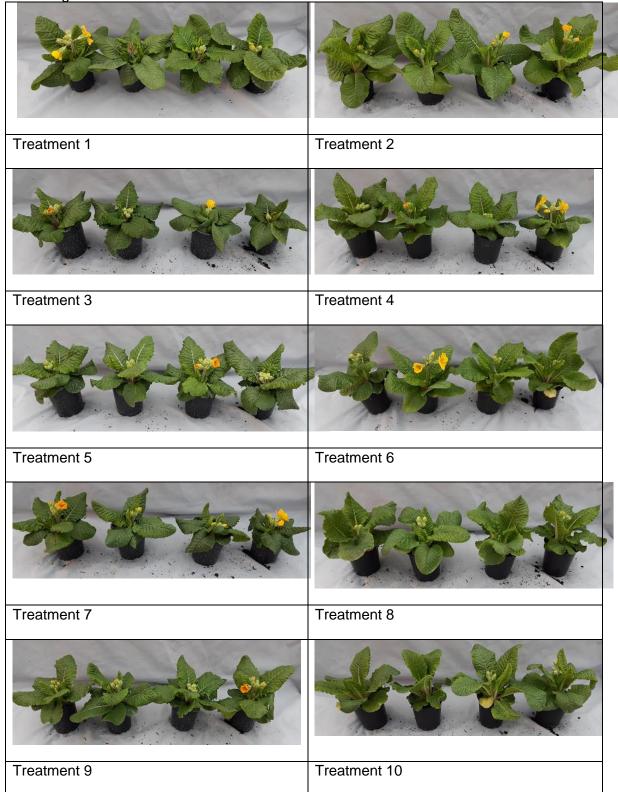
Fresh weight of above ground growth (g) 15/02/2022

-	1															
Treatment		2	2		~	0	7	0	0	40		40	40		45	40
number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Values	18.51	18.58	9.03	17.33	13.43	26.62	14.55	16.07	14.18	18.67	9.64	23.66	15.26	18	10	18
	30.78	20.64	11.41	12.46	18.13	17.81	13.69	4.68	13.87	20.85	18.09	15.51	21.13	24	15.6	25.61
	17.26	21.31	9.09	11.71	23.97	22.14	11.75	22.48	10.16	20.62	17.62	26.17	22	20.92	17.09	20.48
	26.14	13.22	17.66	9.31	12.58	25.41	13.51	24.16	17.15	24.52	11.45	25.64	22.3	16.56	20.16	14.65
	27.33	23.78	9.87	19.3	19.34	24.4	20.2	22.4	16.14	23.96	14	24.76	20.73	7.36	14.82	22.83
	14.53	18.8	9.67	15.86	17.81	25.42	11.07	14	8.25	14.95	13.75	23.21	20.18	22.35	7.48	24.67
	19.43	23.86	12.39	9.77	15.18	23.17	10.7	18.49	25	24.32	11.04	22.79	16.21	20.07	15.26	23.73
	20.6	15.18	10.62	20.44	16.38	19.63	12.29	21.68	25.55	20.5	12.38	15.7	19.14	27.67	14.7	17.89
	19.22	20.64	9.95	17.36	19.14	26.78	9.38	18.04	16.29	24.08	14.21	17	13.9	20.04	17.81	18.22
	33.3	15.88	9.77	11.9	20.3	30.52	9	20.46	17.31	19.19	12.66	18.62	12.79	20.6	13.72	9.42
	23.74	21.28	12.66	20.1	19.24	28.87	10.44	12.03	18.86	15.74	17.48	17.15	11.41	23.15	11.43	19.3
	27.19	19.27	11.5	19	17.26	17.19	13.95	19.05	21.88	22.88	12.8	24.38	17.93	22.7	10.88	29.67
	27.52	9.39	8	15.77	19.97	22.29	14.9	13.56	13.22	22.43	14.22	16.08	15.52	29.62	14.86	26.22
	21.95	29.84	10.55	11.81	9.92	27.21	8.09	21.63	7.08	19.96	15.18	19.76	17.48	27.96	16.36	24.17
	23.3	19	9	14.5	21.74	9.79	9.84	21.95	14	13.24	10.44	21.72	13.8	18.59	17.2	21
	21.89	20.48	8.72	14.32	15.97	19.81	9.65	17.12	9.72	24.28	22	17.7	20.44	21.49	15.58	20.94
	26.48	18.28	6.87	20.25	13.02	19.34	12.97	19.58	17.38	23	14.57	14	17.85	22.45	12.42	25.04
	22.33	22.64	9.77	10.07	16.55	22.15	14.8	14.25	9.6	28	13.18	20.69	15.94	21.74	19.55	21.86
	9.67	16.44	15.67	14.23	18.14	27.5	15.72	22.29	23.93	15.51	14.28	30.15	14.15	19.51	16.53	28.07
	21.97	21.14	13.53	21.44	17.7	23.48	12.3	20.36	17.23	18.41	14.06	22.46	19.19	28.56	8.38	25.3
	13.41	12.84	7.05	20.31	20.6	17.4	13.05	17.38	17.13	15.89	19.87	21.72	16.13	13.7	15.88	24.1
	29.88	20.37	9.88	13.85	18.18	9.16	10.76	14.72	22.73	19.56	12.97	21.74	20.24	13.39	18.71	25.72
	24.8	23.81	8.58	13.34	22.49	23.31	12.98	16.49	17.51	15.43	16.56	22.95	11.81	21.72	18.73	22.51
	21.38	26.48	15.38	15.47	21		11.67	14.73	21.64	23.4	13.12	21.86	20.04	19.06	17.09	23.74
	27.88	22.39	10.53	16.82	17.66		12.78	14.32	22.35	26.76	16.17	23.67	9.08	23.04	13.83	27.42
Average	22.82	19.82	10.69	15.47	17.83	22.15	12.4	17.68	16.73	20.65	14.47	21.16	16.99	20.97	14.96	22.42

Appendix 10. 2021/2022 autumn winter leaf tissue laboratory analysis

	Table 1.	Leaf tissue ana	lysis, sampled	15/02/2022
--	----------	-----------------	----------------	------------

Decription of treatment			Results (mg/l)																
Treatment number	water	humidity	Calcium nitrate rate	PH	NH ₄	NO_3	Al	В	Ca	Cu	Fe	к	Mg	Mn	Мо	Na	Р	S	Zn
T1	High	low	none	6.56	28.26	121.18	0.17	4.80	423	0.56	1.79	4898	471.44	3.53	0.17	239.53	370.62	209.29	3.95
T2	High	high	none	6.64	32.10	251.87	0.13	5.27	370	0.49	1.70	5645	394.55	3.07	0.11	201.21	398.71	175.40	3.67
Т3	Low	low	none	6.62	36.08	51.82	0.28	3.93	595	0.61	2.29	5510	706.23	5.38	0.24	318.31	339.36	350.90	3.73
T4	Low	high	none	6.67	46.25	396.19	0.17	4.40	444	0.74	1.67	6820	631.80	4.35	0.16	276.81	440.35	273.38	3.53
T5	High	low	1:250	6.62	45.96	179.85	0.14	4.61	423	0.57	1.34	5440	480.08	2.81	0.09	222.05	364.56	276.06	3.58
T6	High	high	1:250	6.60	37.36	245.20	0.34	5.41	361	0.73	1.47	5183	379.89	2.55	0.09	153.08	328.60	156.73	3.86
Τ7	Low	low	1:250	6.52	42.02	128.42	0.22	3.26	704	0.54	1.77	5458	719.76	4.15	0.11	300.79	335.58	324.60	3.00
T8	Low	high	1:250	6.58	48.65	504.71	0.35	5.34	545	0.78	2.16	6917	580.98	3.97	0.10	229.62	555.58	264.85	4.44
Т9	High	low	1:500	6.82	47.53	100.37	0.32	5.16	432	0.53	1.30	5112	501.91	3.23	0.15	202.00	348.56	309.50	4.11
T10	High	high	1:500	6.81	38.78	169.47	0.25	6.32	349	0.46	1.22	5485	386.92	3.04	0.19	156.24	394.56	204.42	3.95
T11	Low	low	1:500	6.70	59.09	114.21	0.27	4.31	626	0.49	1.65	6021	751.74	4.49	0.54	324.25	460.35	509.60	4.18
T12	Low	high	1:500	6.81	49.71	419.05	0.15	5.36	422	0.61	1.14	6294	532.09	3.96	0.21	201.92	499.43	259.30	3.67
T13	High	low	1:1000	6.80	67.03	80.34	0.20	5.56	394	0.46	1.14	5776	550.75	3.28	0.15	220.40	388.59	309.63	4.15
T14	High	high	1:1000	6.84	68.36	247.12	0.24	6.60	453	0.72	1.36	6741	580.52	4.31	0.16	208.10	563.97	251.33	4.34
T15	Low	low	1:1000	6.95	75.03	224.96	0.26	4.83	534	0.51	1.47	6511	708.95	4.78	0.18	329.94	415.45	347.39	4.06
T16	Low	high	1:1000	6.82	62.54	360.42	0.20	5.65	301	0.48	1.05	5514	403.59	2.91	0.12	146.84	438.22	168.58	3.41


Appendix 11. 2021/2022 autumn winter trial images

Treatment 1	Treatment 2	Treatment 3
Treatment 4	Treatment 5	Treatment 6
Treatment 7	Treatment 8	Treatment 9

Trial images dated 15/11/2021

Treatment 10 Treatment 11 Treatment12 Image: Second se			
	Treatment 10	Treatment 11	Treatment12
Treatment 16 Image: Mail of the second	Treatment 13	Treatment 14	Treatment 15
	Tractment 46		
	Treatment 16		

Trial images dated 15/02/2022

Appendix 12. Environmental data. Table 1 2021/2022 autumn winter environmental data monitored at crop leaf height using Blue Maestro Tempo Disc™ 3 in 1 Bluetooth environmental monitors

	Low water Low humidity	Low water High humidity	High water Low humidity	High water High humidity
Average temperature °C	7.8	7.8	8.0	8.7
Average humidity %	47.1	60.0	48.2	79.3

Introduction – Section 3. Determine best practice for managing N application to field-grown narcissus in relation to stem length, base rot and Nitrate Vulnerable Zone (NVZ) restrictions

Narcissus is a significant field crop in the UK for both cut flower and bulb production with 3808 ha per annum (figures in 2019), the main areas of production in Cornwall, Lincolnshire and the Grampian region of Scotland. The nutrient management recommendations for bulbs and bulb flowers are contained within the 8th edition of RB209 (2010) and include revisions from the 7th edition based on industry consultation, these were in turn presented within the AHDB Horticultural Narcissus Manual (Hanks, 2013) along with the previous research on which the recommendations were based. Since then, the only research into nutrient management for this crop is the AHDB funded project <u>CP 103</u> (Lillywhite, R. 2016) which looked at N fertilisation in narcissus but only made conclusions about placement, not rates.

Declining prices for bulbs in recent years have changed grower practices, with more focus on longer cut flower production from a single planting of bulbs. Cut flower crops are now in the ground anywhere from 3 to 7 years depending on variety and sensitivity to basal rot (*Fusarium oxysporum* f.sp. *narcissi* (FON)), previously most cut flower crops will have been lifted after 3 years for sale of bulbs.

Most growers are planting crops into a rotation containing agricultural crops such as potato, brassica, barley and peas, and frequently no base dressing of N is applied. Currently the timing of application of N for this crop is limited by Nitrate Vulnerable Zone (NVZ) restrictions which cover about 55% of land in England, for which the closed period is 1st September to 15th January. As narcissus is an early flowering crop, its winter growth is highly important to its flowering productivity.

When consulted nearly 38% of the growers consulted reported that there was no application of N during the lifetime of the crop, so subsequently the same percentage of respondents said they would not benefit from a NVZ application exemption. The 60%+ that do apply N all felt they would benefit from being able to apply during the NVZ closed period. However, these growers did all also comment that they believed that they see a link between N application and FON or basal rot. FON is an important disease of this crop which causes loss in the field and in storage, high temperature in both soil and storage are known to exacerbate the development of the disease and crop management practices are designed to limit exposure. As investigated in other crops such as onion, increased N appears to give increased incidence of disease in narcissus which could be linked with increased softness of the bulb with excessive N fertility. Figures gathered by the AHDB have shown that in the period May 2021 to May 2022, the price of UK-produced ammonium nitrate (NH₄NO₃) fertiliser in Great Britain had increased by 152% and imported prices had increased by 171%. Targeted application of N to all crops is of paramount importance for financial viability, particularly where there is little scope for product price increases.

The trials were designed to investigate the application of N as a top dressing in field grown narcissus, taking the current guidance into consideration but also looking at the effect on yield versus incidence of basal rot caused by FON. The trial also investigated if timing of applications can improve yield, with a specific aim to see if there was justification for application in the current NVZ closed period.

Materials and methods

Two sites were chosen from different growing areas to investigate application rates in different soil type, and different harvesting dates.

Sites were chosen in Cornwall and Lincolnshire where the trials took place over 3 years on a single planting of bulbs at each site.

Details of the two sites are as follows:

- 1. Lincolnshire trial host: Jack Buck Farms
 - Location: Moulton, Spalding, Lincolnshire
 - Planting year: 2019
 - Variety: Tamsyn
 - Previous cropping: vining peas
 - Fertiliser: 0:100:300 kg/ha applied
 - Aspect: level
 - Soil: Loamy and clayey soils with naturally high groundwater

Figure 21. Lincolnshire trial site, image date 16/11/2020.

- 2. Cornwall trial host: Greenyard Flowers
 - Location: Trispen, Truro
 - Planting year: 2019
 - Variety: Karenza
 - Previous cropping: Potatoes
 - Fertiliser: None applied
 - Aspect: gentle slope, north facing
 - Soil: Freely draining slightly acid loam

Figure 22. Cornwall trial site, image dated 06/01/2021.

Full results from soil analysis carried out at the sites are included in Tables 1 and 2 of Appendix 13 of the report.

At each site the trial consisted of 8 treatments replicated 4 times giving a total of 32 plots in randomised design which remained consistent over the 3 years. The plot size was 2 rows x 12m with a buffer zone of 2 rows between plots to ensure that was no influence from the other plots.

Prior to flowering in year 1, all treatment was according to the host grower's normal agronomic practice. In year 2 and 3 the amount and timing of N application was varied according to the details in Table 15. The timing of application at leaf emergence was anticipated to be at different times at the two sites, reflecting the difference in flowering period for the two areas. For both areas it was anticipated that in a normal flowering year this would fall within the NVZ closed period.

N was applied in the form of a liquid product, Efficie-N-t-28 (28-0-0), using a knapsack sprayer with water application rate 300l/ha.

In all other respects the trial area underwent the same agronomic practices as was standard for the grower, including harvesting and application of sprays.

Treatment	Application	Application	Year 2 applic	ation dates	Year 3 app	lication dates
	rate of N	timing				
			Cornwall	Lincolnshire	Cornwall	Lincolnshire
Α	30 kg/ha	at leaf emergence	06/01/21	16/11/20	05/01/22	25/11/21
В	50 kg/ha	at leaf emergence	06/01/21	16/11/20	05/01/22	25/11/21
С	80 kg/ha	At leaf emergence	06/01/21	16/11/20	05/01/22	25/11/21
D	30 kg/ha	after 15th January	17/01/21	18/01/21	18/01/22	26/01/22
E	50 kg/ha	after 15th January	17/01/21	18/01/21	18/01/22	26/01/22
F	80 kg/ha	after 15th January	17/01/21	18/01/21	18/01/22	26/01/22
G	controlled release product *	product recommended rate	Delayed	Delayed	n/a	n/a
н	None					

*Composition to be defined in discussion with industry partners.

For treatment G an appropriate product was not identified and sourced in time for application in year 2, so the decision had to be made to remove the controlled release product form the scope of the trial.

All observations were made at the time that picking would normally occur, but before picking commenced. In year 1, base line observations were taken to compare the data obtained in years 2 and 3. In years 1 and 2 observations were made on 25 bulbs per plot on stem length (measured from the point of emergence to base of the flower bud, at the stage the spathe starts to split), number of flower stems per bulb in the Lincolnshire trial. To assess flower yield in the Cornwall trial, observations were made on number of flowers per m length of plot and

expressed as a population. This was because of the work being carried out as a combined trial with other work at the same site in order to align observations.

In addition to this in year 3, bulbs from a 2m section of a row were lifted from each plot and scored for symptoms of basal rot and measurement of fresh weight. In the Lincolnshire trial the extended period of dry weather experienced in 2022 made the lifting of bulbs by hand exceptionally difficult, due to this it was agreed that the destructive measurements would be carried out on a 1 m length of plot. In the Cornwall trial, rainfall in the spring meant that the assessments could still be carried out on the originally planned 2 m plot length.

Results

The results are presented for the 2 trial sites individually as there are different factors at both locations that may have influenced the outcome of the trials. The full data set and output of the statistical analysis are included in Tables 1 to 6 of Appendix 14 of the report.

In the case of both the stem length and the population/stem number counts the base line records (year 1 data) for each of the plots has been included for visual comparison, but this is not part of the statistical analysis as there should be no treatment effect. In all cases both treatments G and H can be considered as control plots as the intended applications for G did not go ahead.

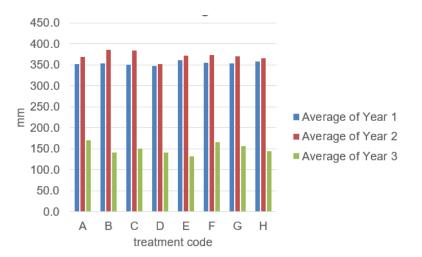


Figure 23. Results of observations on stem length (mm) for Lincolnshire trial for year 1 (2020 baseline), year 2 (2021) and year 3 (2022), L.S.D between treatment 38.23 mm.

No significant differences were observed between treatments in respect to stem length. In year 2 there is a slight increase in stem length with increase in rate of N application, but this is not significant, and this trend does not persist in year 3.

There is a very big seasonal affect for stem length, with the length in year 3 being at least half of that observed in year 1 and 2, suggesting the environment is having a greater impact than the N application.

In year 2 there is a slight increase in length of stem when N is applied at leaf emergence compared to after the NVZ closed period, across all rates but again this is not statistically significant.

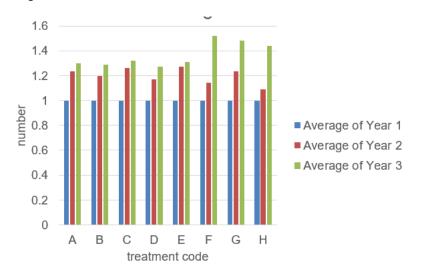
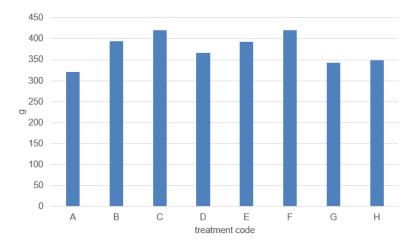
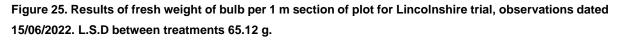




Figure 24. Results of observations on number of stems per bulb for Lincolnshire trial for year 1 (2020 baseline), year 2 (2021) and year 3 (2022). L.S.D between treatments 0.252.

No significant differences were observed between treatments with respect to number of stems, and there seems little pattern in the response to N application on the number of stems produced per bulb, for example in year 2 treatment F is the lowest and in year 3 it is the highest. It is also of note that the results from the control plots fall within the range of expression for the treatment plots in both years.

The observations show that the average weight of bulbs does increase with increasing amount of N when it is applied at leaf emergence or after the NVZ closed period. However, application of N at 30 kg/ha or at 50 kg/ha rate does not significantly increase the weight of bulbs over no application in either period.

Application of N at 80 kg/ha rate does significantly increases the weight of bulbs over no application, at both leaf emergence and after the NVZ closed period, but there is no significant increase from the change in the timing of application from after the NVZ closed period to the point at which the leaves emerge, which was during the NVZ closed period.

Although not significantly different from the bulb weight of the controls, there is a significant difference between the weight of bulbs in the treatments with N applied at 30 compared with the 50 kg/ha rate when applied at leaf emergence.

As there are no significance in the number of bulbs between any treatment, we can be confident that it is an increase in the individual bulb size.

The data obtained on incidence of disease in the Lincolnshire trial shows lower expression of FON than anticipated.

Table 16. Counts of the number of bulbs expressing symptoms of FON, where score of 1 no disease
symptoms on an individual bulb and 5 is a high level.

				_	_		-	<u> </u>
Treatment code	A	В	С	D	Е	F	G	Н
Application rate	30 kg/ha	50 kg/ha	80 kg/ha	30 kg/ha	50 kg/ha	80 kg/ha	None	None
Application period	at le	af emerg	ence	after	15th Jar	nuary	N	/A
Number of bulbs at disease score				1			L	
1	370	465	381	423	439	464	427	401
2	1	2	4	6	4	1	3	2
3	2	2	2	0	0	0	0	0
4	1	0	0	0	0	1	1	1
5	1	0	0	0	0	0	0	0

On initial inspection the data seemed to suggest that the application of N at leaf emergence increased the rate of disease above that seen in the treatments with no N applied, or those with N applied later. However, the total number of affected bulbs is the same for both application periods, and there is minimal difference in the severity. There is also little difference between the plots where N is applied and the untreated control plots. The large number of null values obtained make for poor statistical analysis, so it is not possible to say if these minor differences have any significance.

The Cornwall observations have been transformed from the original measurements in cm to mm to aid comparison with the Lincolnshire trials.

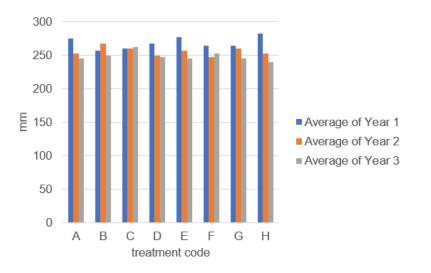
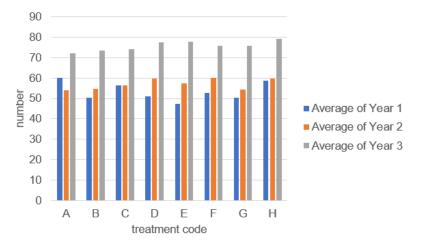
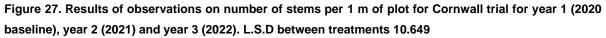




Figure 26. Results of observations on stem length (mm) for Cornwall trial for year 1 (2020 baseline), year 2 (2021) and year 3 (2022). L.S.D between treatments 33.09 mm

Very little variation is observed either between years or between treatments, and none of the variation seen represents significant differences.

No significant differences between treatments in the number of stems observed per 1 m length of plot. The trend is for the number of stems to increase over the period of the trial, but the values obtained all move similarly suggesting that this is related more to the general environment or the age of the bulb.

There is a slight suggestion for the number to be slightly higher when N is applied after the NVZ closed period than at leaf emergence, but to reiterate these differences are not significant.

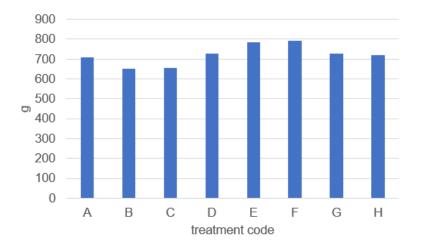


Figure 28. Results of fresh weight of bulb per 2 m section of plot for Cornwall trial, observations dated 26/05/2022. L.S.D between treatments 48.81 g.

The results show that the average weight of bulbs does increase with increasing rate of N, but only where it is applied after the NVZ closed period, no increase with rate is seen when the application is at leaf emergence.

The application of N at 30 kg/ha rate does not significantly increase the weight of bulbs over no application, either at leaf emergence or after the NVZ closed period. Application of N at 50 kg/ha rate and at the 80 kg/ha rate does significantly increase the weight of bulbs over no application after the NVZ closed period, but not when applied at leaf emergence.

Application of N at the 2 higher rates at leaf emergence has given rise to a significantly lower fresh weight of bulbs when compared with application after the NVZ closed period. At the lowest rate there is no significant difference. It is unclear why this might be the case as there is no significant incidence of basal rot in the trial to cause loss of bulbs in these treatments. Basal rot was in fact only seen in a single bulb in each of 4 plots, each of a different treatment.

Discussion

The investigation in this trial fell into 3 main aspects, timing of application, rate of application, and impact of rate on incidence of FON. In discussing the results, it is important to consider that the 2 trial sites were picked for their different geographical position, and in doing that different varieties have been used at each site due to availability of suitable host locations. As this is the case the response of the different varieties (genotypes or G) to the treatments in the different regions (environment or E) is a factor, referred to as the G x E interaction.

The trials results provide no evidence to support that hypothesis that it would be beneficial for application of N to take place at an earlier stage of the crop, i.e. at leaf emergence when that falls within the NVZ closed period. From many perspectives this should be viewed as positive outcome of the trial - the NVZ closed period exists to protect the environment in

certain areas, preventing leaching of nitrates into surface water. If there is no benefit in applying during this period, then there is no value in risking N leaching into the water system. This also means that N applied during this period where NVZ restrictions do not apply, is likely to be less effective than if it is applied later in the growth stage of the plant.

A rate response was observed in the results obtained for bulb weight, but not for stem length or for number of stems produced. The observations from the Lincolnshire trial suggest that the influence from the year (environment), is a greater influence for stem length than N application, but in the Cornwall trial little response to year or treatment was observed. This could either be a result of more similar environmental conditions over the 3-year period, or that the variety (Karenza) is not greatly influenced in the respect.

The weight of bulbs harvested at the end of the trial was higher with the application of N at a rate of 80 kg/ha; the percentage increase varied with the trial site, in the Cornwall trial this was 9.6% higher than with the untreated plots and in the Lincolnshire trial this was 21% greater. Based on the data obtained it is not possible to say if the increase in yield is influenced by the variety response to the treatment as well as the trial location, but this seems possible. However, we must also consider the soil type, and aspect of the land in relation to the likelihood of NO₃ being leached from the soil at different rates at the different locations. The soil type at the Lincolnshire site is a clayey loam with level aspect as opposed to free draining loam on a slope at the Cornwall site.

Results from this study indicate that rates of N at 50 kg/ha or lower do not have any positive impact.

Like the data obtained for stem length, the number of stems does not appear to have been positively influenced by the application of N in this study. At both trial sites the number of stems increased over the 3 years of the work, at this point the practice of both host farmers is to end flower production and harvest the bulbs. Due to this and the duration of the project it has not been possible to investigate the impact of increased bulb weight from application of N at the 80 kg/ha rate, on the longer term productive of the bulbs for flower production. As the scoping study highlighted, although ending production 3 years after planting is the practice on the host farms, the declining price for bulbs has resulted in some growers continuing cut flower production for up to 7 years. Only further work would indicate if N application at this rate would have longer term benefit on stem production due to the greater bulb weight.

In investigating the incidence of FON in relation to N application the study has generated little data relating to expression of the disease, so has not established the link between N fertility and FON infection which has been previously noted in project BOF 31 (Linfield and Hanks., 1994).

It is possible that the rates applied were sufficiently low to not given rise to the problem, or that the varieties had sufficient resistance to FON to make the infection rates too low. Variety resistance to FON is well studied (Bowes, S.A *et al* 1992) but the trial design had taken this into consideration, so it is not believed to be a factor. It could be that the experimental design did not take into consideration that bulbs may have rotted to the point where there is no observable trace after 3 years of the planting. As only the weight rate of planting is known and not the exact number of bulbs per m, we cannot say exact numbers lost. However, this is also possibly irrelevant as the bulbs will also have naturally multiplied vegetatively during this time, if conditions were favourable, which will have changed the observable and potential number that could have developed symptoms of FON infection. To assess the impact of N more accurately on the rate of infection, a larger scale trial would need to be designed which would allow more regular lifting of bulbs to assess for infection without being detrimental to the overall trial.

Conclusions

- N application at a rate of 80 kg/ha improved harvested bulb weight but had no impact on stem length or yield of flowers, when applied as a top dressing after leaf emergence in a 3-year production cycle (2 years of flower harvesting).
- N application at rates of 50 kg/ha or lower had no impact on harvested bulb weight, stem length, or yield of flowers, when applied as a top dressing after leaf emergence in a 3-year production cycle (2 years of flower harvesting).
- No evidence to suggest application of N at leaf emergence during the NVZ closed period has any advantage to the crop over later application, in terms of yield or stem length.
- No evidence to suggest application of N at rates of up to and including 80 kg/ha, increased the rate of FON infection.

Knowledge and Technology Transfer

Welsh Flower Network (Lantra) - Soil Health and how to unlock nutrients for flowers online event

Glossary

Genotype \times Environment interaction is where expression of certain physical attributes of a plant such as size and yield are different depending on the response of genetic makeup to different environmental factors.

Nitrate Vulnerable Zones (NVZs) - The European Commission (EC) nitrates directive requires areas of land that drain into waters polluted by nitrates to be designated as Nitrate Vulnerable Zones (NVZs). Farmers with land in NVZs must follow mandatory rules to tackle nitrate loss from agriculture.

References

Bowes, S.A., Edmondson, R.N., Linfield, C.A. et al. Screening immature bulbs of daffodil (Narcissus L.) crosses for resistance to basal rot disease caused by Fusarium oxysporum f. sp. narcissi . Euphytica 63, 199–206 (1992)

Hanks, G. (2013). The Narcissus Manual. AHDB Horticulture Growers Guide.

Lillywhite, R. (2016). The application of precision agronomy to UK production of Narcissus. AHDB Research Project CP 103

Linfield, C.A., Hanks, G (1994) Control of *Fusarium oxysporum* f.sp. *narcissi*, the cause of narcissus basal rot, with thiabendazole and other fungicides. HDC project BOF 31

Appendices

Appendix 13. Soil nutrient analysis

Table 1. Results from samples at Lincolnshire trial site, samples dated 19/02/2020

				ANALYTI	CAL REPORT								
Report Number	88979-20		R619	SUE CAHILL			Client NARCI	SSUS					
Date Received	21-FEB-2020			NIAB									
Date Reported	27-FEB-2020			HUNTINGDON	ROAD								
Project	SOIL MINERAL NIT	ROGEN		CAMBRIDGE									
Reference	NARCISSUS			CB3 0LE									
Order Number													
Laboratory Reference		MINN137622	MINN137623	MINN137624	MINN137625	MINN137626	MINN137627	MINN137628	MINN137629	MINN137630			
Sample Reference		PLOT 1 30	PLOT 5 30	PLOT 9 30	PLOT 10 30	PLOT 17 30	PLOT 21 30	PLOT 25 30	PLOT 30 30	PLOT 32 30			
Determinand	Unit	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
pH water [1:2.5]		8.4	8.2	7.9	8.1	8.2	8.3	7.9	8.2	8.3			
Available Phosphorus (Index)	mg/l	48.4 (4)	32.4 (3)	22.0 (2)	20.2 (2)	17.6 (2)	19.2 (2)	17.2 (2)	20.0 (2)	17.8 (2)			
Available Potassium (Index)													
Available Magnesium (Index)	mg/l	88.0 (2)	104 (3)	98.2 (2)	93.5 (2)	99.1 (2)	112 (3)	99.8 (2)	90.3 (2)	96.4 (2)			
Nitrate Nitrogen (Fresh)	mg/kg	0.80	1.53	0.96	0.56	0.73	0.96	0.51	0.64	0.53			
Ammonium Nitrogen (Fresh)	mg/kg	0.80	0.67	0.54	0.50	0.63	0.34	0.57	1.20	0.77			
Dry Matter (Fresh)	%	77.9	80.4	80.3	79.9	80.0	80.0	79.7	79.2	79.9			
Available Copper EDTA	mg/l	12.8	16.2 2.2	16.8	15.3	15.2	15.4	14.6	15.2	14.7			
Available Zinc EDTA Available Sodium	mg/l mg/l	2.6	2.2	2.0	1.7	1.6	1.7	1.6 14.3	1.6 14.8	1.5 12.9			
Available Calcium	mg/l	1746	1917	14.0	13.4	2084	2109	2013	14.8	2007			
Available Sulphate	mg/l	1140	13.8	11.6	10.5	10.9	12.9	12.0	10.59	11.5			
Organic Matter LOI	% w/w	2.7	3.0	3.0	2.9	2.8	2.9	3.0	2.8	2.9			
Hot Water Soluble Boron	mg/l	1.9	2.0	1.8	1.8	1.7	1.8	1.9	1.7	1.7			
Available Manganese	mg/l	6.3	7.3	7.1	6.7	6.4	6.7	6.9	6.6	6.8			
Available Iron	ma/l	78.5	71.9	66.4	64.5	67.7	69.1	67.2	72.5	72.6			
Notes													
Analysis Notes Document Control	The sample submitte The results as report The results are presu This test report sha	ed relate only to ented on a dry m	the item(s) sub atter basis unle	mitted for testing ss otherwise stip	ulated.	oval of the labo	ratory.						

 Table 2. Results of soil nutrient analysis from samples at Cornwall trial site, samples dated
 17/09/2019

			Analysis	s Results	(SOIL)				
Customer			ERS	Distribu	tor HUTCHINSONS - AMIE HORNER				
Sample Ref	TRISPE	IN FLD 3		Date Re	ceived 19/09/2019 (Date Issued: 24/09/2019)				
Sample No	E31911	0/04							
Crop	DAFFO	DILS							
Analysis	5	Result	Guideline	Interpretation	Comments				
рН		6.9	6.5	Adequate level. Maintain pH to ensure optimum nutrient nutrient availability and ideal conditions for an active soil biology.					
Phosphorus (ppm	1)	28	(Index 3.1) Adequate level.						
Potassium (ppm)		326	241	Normal	(Index 3.5) Adequate level.				
Magnesium (ppm)	117	100	Normal	(Index 3.2) Adequate level.				
Calcium (ppm)		2244	1600	Normal	Adequate level.				
Sulphur (ppm)		12	10	Normal	Adequate level.				
Manganese (ppm)	88	65	Normal	Adequate level.				
Copper (ppm)		11.7	2.1	Normal	Adequate level.				
Boron (ppm)		1.01	2.10	Low	2 x 1 Vha YaraVita BORTRAC 150.				
Zinc (ppm)		17.8	4.1	High	Possible interference with the availability of Iron.				
Molybdenum (ppr	n)	0.03	0.40	Very Low	Low priority on this crop. Other crops may be affected.				
Iron (ppm)		770	200	Normal	Adequate level.				
Sodium (ppm)		37	90	Very Low	Not a problem for this crop.				
C.E.C. (meq/100g	j)	15.3	15.0	Normal	Cation Exchange Capacity indicates a soil with a good nutrient holding ability.				
Org. Matter - DUM	MAS (%)	5.1	3.0	Normal	Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels.				

81

Appendix 14. Trial observations and statistical analysis

Ver2 i Stem Length (mm), 25 Bulbs per Plot Plot Trt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 A 415 323 351 331 354 440 355 400 410 470 415 335 6 7 18 19 20 21 3 H 419 402 355 344 440 355 400 410 470 415 335 - <t< th=""><th>Т</th><th colspan="13">Stem Length (mm), 25 Bulbs per Plot</th></t<>	Т	Stem Length (mm), 25 Bulbs per Plot																									
2 6 90 90 90		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Av
3 4 42 3		324	401	343	372	334	328	331	342	353	349	325	250	337	323	365	420	285	361	335	403	345	372	367	355	390	348
6 0 303 340 003 347 036 347 036 347 036 347 036 347 036 347 036 347 036 347 346 147 346 047 357 548 377 548 347 346 340		363	404	349	377	396	299	349	285	335	383	312	353	205	296	300	332	298	227	525	268	365	339	388	355	350	338
S C 25 S 36 36 37 30 31 347 39 37 39 27 39 27 39 27 39 27 39 27 39 27 39 27 39 27 39 37 <td>1</td> <td></td> <td>355</td> <td></td> <td></td> <td></td> <td>360</td> <td>385</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>391</td> <td></td> <td></td> <td>365</td> <td></td> <td>343</td> <td>288</td> <td>394</td> <td>363</td> <td>386</td> <td>333</td> <td>396</td> <td>362</td>	1		355				360	385							391			365		343	288	394	363	386	333	396	362
6 98 <th< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>357</td><td>381</td><td>397</td><td>356</td><td>367</td></th<>	1																						357	381	397	356	367
n c value value </td <td>+</td> <td></td> <td>336</td> <td>302</td> <td>389</td> <td>390</td> <td>338</td>	+																						336	302	389	390	338
8 7 3	+																						346	416	350	372	365
9 0 32 39 30 77 33 36 74 37 36 40 37 38 36 37 38 <td>+</td> <td></td> <td>392</td> <td>355</td> <td>411</td> <td>325</td> <td>366</td>	+																						392	355	411	325	366
10 R 30 302	+																						361	330	375	334	351
11 A 310 321 390 372 383 384 328 312 304 376 305 386 384 383 383 385 386 394 385 386 395 385 386 394 385 386 395 385 386 394 385 394 385 396 395 395 391 395 392 391 392 393 391 392 391 393 391 393 391 393 391 393 391 393 391 393 391 393 391 393 391 393 391 393 391 393 391 393<	+																						348	273	384	332	354
12 H 399 364 400 370 380 380 380 380 482 380 482 380 482 380 482 380 482 380 482 380 482 380 482 380 482 380 482 380 483 480 380 482 480	÷																						435	379	361	404	378
13 C 369 375	+																						356	372	353	354	344
14 E 470 388 472 373 342 402 311 345 319 252 293 372 378 446 392 491 332 313 248 16 8 367 392 346 385 355 358 344 373 382 403 312 327 313 344 380 321 323 333 324 335 326 334 315 324 335 326 321 327 336 344 300 345 366 360 341 356 340 355 320 320 321 323 323 321	+																						443	382	394	362	385
15 6 30 27 35 37 32 32 32 30 32 32 33 34 33 33 33 33 34 33 33 33 33 34 33 </td <td>÷</td> <td></td> <td>386</td> <td>342</td> <td>377</td> <td>350</td> <td>376</td>	÷																						386	342	377	350	376
16 8 367 388 468 389 402 355 388 347 375 384 383 315 344 315 343 315 343 315 328 383 316 323 383 315 323 385 306 337 344 347 333 385 306 307 341 357 330 350 320 420 300 353 382 400 300 400 313 355 306 307 321 20 323 340 300	+																						298	378	371	352	371
17 H 370 375 346 380 312 322 328 323 303 315 322 288 323 303 315 322 288 323 303 315 322 288 323 303 385 306 304 304 304 302 321 347 333 385 306 303 345 306 303 335 324 303 305 304 304 304 300 300 300 303 385 306 304 307 304 305 324 335 378 396 342 386 384 303 305 304 305<	÷																						381 340	365 330	301 340	372 312	349 365
18 F 206 352 468 413 345 30 311 377 337 64 382 311 347 333 385 366 364 314 30 400 315 350 320 420 360 353 382 420 300 420 380 324 335 386 386 386 321 321 320 385 386 387 380 320 320 320 320 320 320 321 321 321 321 321 321 321 321 321 321 321 321 321 321 321 320 320 320 320 320 320 320 321 320	+																										
19 G 370 338 400 340 400 315 355 320	÷																						320	384	340	281	328
b b c s	+																						378	365	-	-	355
21 C 300 394 490 310 325 320 325 320 325 320 325 320 325 320	+																						390 330	395 359	315 345	400 344	374 339
22 D 374 386 349 386 211 212 240 130 340 361 313 345 366 379 345 386 386 386 380	÷																						400	359	345	344	339
23 E 364 400 329 318 364 300 366 300 370 300 360 371 360 361 378 358 364 460 355 370 380 300 360 321 375 360 321 375 360 321 375 360 321 375 360 320 380 380 302 380 321 375 360 360 320 380	ł																						357	298	295	345	353
24 A 370 382 400 330 370 300 360 323 360 321 375 360 340 355 372 382 370 345 344 365 322 323 356 320 331 316 383 356 310 323 355 322 382 345 311 313 315 355 382 356 410 380 366 390 330 356 320 324 315 355 382 356 410 283 380 366 392 340 355 352 365 341 356 328 355 342 356 340 382 371 380 386 346 398 344 344 346 352 357 340 330 322 351 340 330 322 330 321 331 354 340 330 322 331 354	+																						357	338	295 340	376	340
1 245 349 315 367 372 387 386 320 311 316 388 365 288 311 323 365 401 320 320 330 365 330 365 330	+																						342	338	340	348	349
26 0 353 356 324 328 330 362 260 356 300 322 320 324 311 323 305 360 290 320 330 27 E 420 452 370 355 410 378 290 330 305 344 376 320 324 315 355 358 350 300 300 300 300 300 300 300 300 300 301 311 350 340 320 311 350 340 320 330 340 320 330 340 320 320 <td>t</td> <td></td> <td>434</td> <td>342</td> <td>402</td> <td>423</td> <td>355</td>	t																						434	342	402	423	355
27 E 420 452 370 355 410 378 290 330 305 344 378 320 324 315 355 382 356 410 283 380 346 288 346 288 346 288 346 288 346 288 346 288 346 288 346 288 346 288 346 328 346 328 346 328 346 328 346 328 346 328 346 328 346 328 347 330 331 330 331 336 341 345 340 332 333 376 330 331 346 320 330 331 346 320 331 336 341 345 340 333 378 334 322<	t																						326	355	340	328	330
28 A 398 396 383 303 365 310 325 300 355 352 356 311 356 328 330 388 382 346 298 344 29 C 335 340 378 378 355 355 355 356 356 356 356 356 356 356 356 356 356 356 356 356 356 356 364 370 330 311 380 373 344 346 352 375 32 75 322 32 32 32 32 330 330 330 330 311 380 344 346 326 375 32 75 32 75 32 75 32 75 330 311 34 36 30 330 310 314 345 310 324 320 331 344	t																						360	366	330	315	355
29 C 335 340 378 355 310 265 305 400 335 355 358 374 350 336 340 322 320 330 360 344 312 30 8 263 383 318 344 315 334 347 312 315 371 344 312 315 371 373 344 346 322 375 344 325 311 380 380 320 320 333 376 334 325 314 360 348 324 320 334 350 325 314 360 348 324 320 334 350 333 376 334 325 314 360 348 320 334 350 340 <td>t</td> <td></td> <td>345</td> <td>342</td> <td>320</td> <td>362</td> <td>355</td>	t																						345	342	320	362	355
30 B 263 383 318 344 315 338 347 312 315 372 366 298 385 390 260 299 338 382 371 378 276 31 G 390 330 320 320 320 320 320 320 330 311 380 373 344 346 320 351 2 F 328 322 352 322 322 252 258 282 332 330 331 378 334 435 346 324 320 344 346 320 331 334 325 314 360 348 324 320 334 333 378 334 325 344 346 320 331 334 325 341 345 340 344 345 340 344 345 340 344 345 340 342 341 345 341 345 341 345 340 341 345 340	t																						306	364	298	300	336
31 6 390 330 320 318 380 380 380 380 380 380 380 380 320 320 330 331 380 311 380 373 344 346 352 375 Year 2 Year 3 322 352 322 351 331 354 348 29 320 331 344 346 352 375 Ver 1 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 19 20 21 1 2 G 295 310 331 344 440 355 400 10 11 12 3 14 15 16 17 18 19 20 21 18 3 H 419 402 366 344 320 228 333 374 345 370 342 322 331 344 448 340 <	t																						362	292	368	355	341
32 F 328 322 322 322 322 258 282 332 362 330 378 334 325 314 360 348 324 320 334 350 Year 2 Ver Ver Ver Ver Ver Plot Tt 1 2 3 4 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 21 3 H 419 402 355 340 341 345 370 344 382 372 402 352 331 355 360 410 402 352 331 354 344 325 366 370 364 341 352 341 458 402 260 4 0 360 370 375 360 340 325	t																						382	374	319	358	353
Vera 2 Stem Length (mm), 25 Bulbs per Plot Plot Trt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 A 415 323 323 351 331 354 440 355 400 410 470 415 333 334 458 400 410 470 415 334 344 58 341 458 402 266 202 3341 458 402 260 40 208 432 291 168 380 402 341 325 368 205 - </td <td>t</td> <td></td> <td>350</td> <td>344</td> <td>389</td> <td>322</td> <td>386</td> <td>334</td>	t																					350	344	389	322	386	334
Plot Tt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 A 415 323 351 351 354 348 297 320 341 345 345 340 347 345 347 345 347 346 347 346 347 347 346 342 343 342 343 347 352 341 458 402 240 3 H 419 402 346 340 <th></th> <th>- 1</th> <th></th>																- 1											
1 A 415 323 323 351 331 354 348 297 320 341 345 370 342 202 330 342 7 7 7 2 G 295 310 330 350 415 345 400 410 470 435 337 327 496 348 382 202 330 342 7 7 7 7 7 7 7 340 415 335 7 496 348 382 72 402 354 334 352 344 355 456 379 340 410 290 430 360 370 356 490 468 492 343 352 341 355 456 379 370 340 410 290 430 30 370 355 360 490 468 471 366 370 370 370 370 <td< th=""><th></th><th></th><th>-</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>10</th><th></th><th></th><th></th><th></th><th></th><th></th><th>25</th><th></th></td<>			-			-	-	-											10							25	
2 6 295 310 330 350 415 345 440 355 400 410 470 415 335 7<		-																1/	18	19	20	21	22	23	24	25	Av 333
B H 419 402 265 394 329 228 332 333 374 396 382 372 402 354 334 352 341 458 402 260 4 0 206 432 291 168 380 348 420 372 402 354 334 352 341 458 402 260 5 C 340 380 400 380 470 380 470 370 340 410 200 350 490 380 372 403 360 370 355 471 366 286 378 303 397 463 408 469 7 E 240 469 348 416 452 342 338 362 443 429 391 370 400 430 350 303 377 403 355 300 450 350 450					_	_				-	-				202	550	542										375
4 0 208 432 291 168 380 348 420 341 325 368 205 7 7 7 7 7 7 370 340 320 50 385 440 370 340 220 430 360 370 355 360 490 6 8 399 375 332 386 339 404 382 355 456 379 355 471 366 266 378 303 397 456 408 466 469 348 416 452 342 338 362 443 442 391 299 371 70 70 463 408 405 390 470 380 470 380 470 380 370 480 375 350 9 0 455 322 133 385 349 425 334 405 396 371															402	254	224	252	241	450	402	260	448	398	369	375	367
S C 340 380 400 380 370 340 320 510 385 440 370 340 410 290 430 360 370 355 360 490 6 B 399 378 375 432 386 330 404 382 355 456 371 366 240 463 333 397 463 488 468 484 491 391 299 371	-												362	372	402	354	334	352	541	458	402	200	440	398	309	5/5	317
6 8 399 378 375 432 386 394 404 382 355 456 379 365 471 366 286 378 303 397 463 408 469 7 E 240 469 348 416 452 342 338 362 443 442 391 370 400 403 357 350 9 D 455 322 413 385 358 349 425 376 472 360 370 400 440 335 390 420 380 375 360 9 D 455 322 413 385 358 349 425 376 472 361 325 220 311 382 356 388 279 434 375 450 366 11 A 300 410 315 410 339 388 392													270	240	410	200	420	260	270	255	260	400	450	344	510	195	380
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_																						159	376	365	322	377
8 F 390 430 370 455 350 370 400 400 400 435 330 420 380 375 350 9 0 455 322 413 385 358 349 425 334 405 360 370 420 380 375 350 400 400 400 400 400 400 400 335 390 420 380 375 350 9 0 453 372 367 418 550 320 363 455 376 422 369 371 450 330 300 445 366 340 300 301 303 300 445 366 340 203 310 300 445 366 340 200 310 450 300 310 300 300 412 460 200 410 300 300 410 300 30															300	200	370	303	357	403	400	405	135	370	305	322	378
9 0 455 322 413 385 358 349 425 334 405 396 474 282 361 325 220 318 259 295 348 365 409 10 F 453 372 361 416 550 320 363 455 371 382 356 338 279 434 375 450 360 11 A 340 430 10 315 410 355 355 355 420 375 456 330 345 280 370 410 12 H 450 403 376 360 405 346 339 388 392 331 300 445 366 342 398 284 346 209 13 C 238 442 312 414 355 310 455 380 340 300 412 460															400	440	225	200	420	290	275	250	310	340	375	420	378
10 F 453 372 367 418 550 320 363 455 376 422 369 371 382 356 338 279 434 375 450 366 11 A 340 410 315 410 385 356 326 375 450 376 423 370 450 300 12 H 450 403 376 460 375 450 470 305 320 345 280 370 410 14 450 410 390 420 430 255 310 455 385 410 390 300 340 300 412 466 29 14 E 340 410 390 420 430 255 310 451 450 430 380 300 300 412 460 20 460 370 450 350 385																							210	439	404	444	360
11 A 340 430 410 315 410 385 365 265 325 420 375 465 450 470 305 330 345 280 370 410 12 H 450 403 376 60 405 346 339 388 392 331 330 300 445 366 342 398 284 346 20 13 C 238 442 312 314 355 360 340 300 445 366 342 388 284 346 20 14 E 340 410 390 420 430 255 310 455 385 410 280 310 340 430 300 400 300 420 400 470 420 405 445 440 280 299 401 451 355 340 273 415																						405	210	435	404		391
12 H 450 403 376 360 405 346 339 388 392 333 402 311 330 300 445 366 342 398 284 346 209 13 C 238 442 312 14 355 315 353 362 376 450 439 388 381 330 300 445 366 342 398 284 346 209 14 E 340 310 300 445 366 342 398 284 346 209 15 G 344 300 405 355 315 355 316 481 464 298 299 401 451 375 414 350 340 273 415 16 B 491 346 442 490 280 450 403 350 355 315 275 310																						410	370	430	470	390	379
13 C 238 442 312 414 355 353 362 376 430 430 378 395 380 340 300 412 466 14 E 340 410 390 420 432 255 310 455 355 410 280 350 385 315 300 412 466 7 15 G 384 303 405 452 176 472 210 361 481 464 288 499 401 430 300 430 300 402 430 300 402 430 300 402 430 300 400 430 300 402 400 400 470 420 400 300 450 350 315 310 300 300 410 335 460 340 316 300 300 410 335 400 310 <td></td> <td>152</td> <td>299</td> <td>475</td> <td>449</td> <td>373</td>																							152	299	475	449	373
14 E 340 410 390 420 430 255 310 455 385 410 280 210 450 385 315 300 380 430 450 455 15 G 384 303 405 457 385 410 280 210 450 350 385 315 300 380 430 350 455 16 B 491 346 442 490 280 451 464 484 402 360 315 440 30 30 30 300 300 300 400 451 454 402 450 450 450 450 450 450 450 350 315 400 300 300 300 400 400 30 400 30 400 30 400 30 300 300 300 400 318 30 30 30 300																					540	200	1.52	200			372
15 G 384 303 405 452 176 472 210 361 481 464 298 459 299 401 451 375 414 350 340 273 415 16 8 491 346 442 490 280 451 420 260 330 369 315 440 - <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>350</td><td>465</td><td>375</td><td>335</td><td>375</td><td>410</td><td>369</td></t<>	_																				350	465	375	335	375	410	369
16 8 491 346 442 490 280 451 425 464 454 402 263 330 369 315 440 - <	_																						404	418	463	462	381
17 H 420 420 400 470 420 490 470 420 490 370 460 355 315 275 310 330 300 410 335 365 480 340 18 F 398 311 380 342 303 366 235 356 313 423 370 350 415 396 290 460 370 384 370 383 347 19 G 334 433 188 392 470 344 402 325 355 412 412 70 440 333 350 334 350 335 400 310 300 400 334 350 383 347 19 G 334 433 188 392 470 344 402 325 430 360 345 440 320 390 190 430 335 400 310 410 412 410 410 410 410 410 410															-												395
18 F 398 311 380 342 303 366 235 356 313 423 370 350 415 396 290 460 370 334 350 338 347 19 G 334 433 188 392 470 344 402 328 358 452 314 414 142 -	-																-	410	335	365	480	340	315	390	350	345	375
19 G 334 433 188 392 470 344 402 328 358 452 314 414 142 <																						347	170	348	376	380	349
20 B 415 485 500 400 430 320 390 325 430 360 345 425 440 320 390 430 310 410 21 C 362 465 456 461 295 480 373 430 456 416 466 500 416 436 392 405 447 390 324 296 342	_				_																						352
21 C 362 465 456 461 295 480 373 430 450 416 468 500 416 436 392 405 447 390 324 296 342															320	390	190	430	335	400	310	410	470	340	370	400	385
		_						_														342	450	415	436	462	415
22 D 420 451 386 351 165 342 329 298 304 365 372 355 323 345 326 275 315 412 362 369 369		420		-	_	_		329	298	304	365	372	355	323	345	326	275	315	412	362							343
																						325	420	355	390	380	376
																						389	270	336	420	360	382
25 H 330 236 417 384 377 279 363 393 332 362 441 321 326 370 374 430 492									393																		366
																			430	390	350	410	340	360	350	470	384
															270	463						262	205	372	319	356	363
28 A 378 350 316 256 455 325 391 500 493 453 321 335						455			500			321															381
														345	400	365	490	295	375	335	350	330	320	410	375	390	370
			560			403							385	335			409					348	409	344	398	392	383
			288	465	462	402	446	321	312	330	379	505	345	351	246	464	329	498	217	255	325	369	418	480			375
		420	200	100	102	102	110																				

 Table 1. Lincolnshire trial data for stem length.

Year 3		Stem Length (mm), 25 Bulbs per Plot																									
Plot	Trt	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Av
1	Α	160	180	140	150	200	170	150	140	180	150	160	160	150	200	160	150	50	180	180	160	160	150	180	100	150	156
2	G	120	120	80	90	140	80	160	170	100	170	160	170	130	140	170	130	160	90	130	170	150	160	160	150	160	138
3	Н	140	170	170	150	160	150	100	160	150	150	160	150	140	140	160	130	100	150	170	170	200	150	140	120	170	150
4	D	140	140	160	140	140	160	140	110	130	140	140	160	60	150	140	150	150	180	140	140	150	120	130	140	170	141
5	С	120	130	80	160	140	120	120	170	150	150	140	160	140	150	130	140	120	150	140	130	130	140	100	140	160	136
6	В	160	160	150	160	160	120	160	100	150	160	120	120	160	110	160	160	150	130	90	180	200	200	190	170	150	151
7	E	120	130	140	160	150	130	150	100	110	90	150	190	190	130	180	170	160	160	140	140	130	110	180	130	140	143
8	F	140	110	140	140	120	170	130	100	150	110	110	160	140	140	150	130	150	150	110	160	130	170	160	130	150	138
9	D	160	180	110	130	110	100	150	180	80	150	150	110	130	110	120	160	120	110	150	100	150	120	160	190	180	136
10	F	160	180	170	100	140	110	160	160	140	180	120	150	120	190	180	180	170	150	120	140	130	160	130	140	140	149
11	Α	140	140	90	110	140	120	160	130	140	120	90	150	150	90	150	110	170	120	160	140	160	110	140	140	140	132
12	Н	160	130	50	140	140	140	110	130	130	90	120	150	160	160	160	160	130	120	160	180	190	150	140	130	160	140
13	C	140	140	120	100	140	150	120	110	120	150	130	80	150	150	170	120	180	160	140	140	190	190	150	160	160	142
14	E	120	120	140	150	110	150	110	150	70	160	130	130	140	180	160	180	160	90	160	110	130	110	120	140	160	135
15	G	110	110	140	130	120	100	140	160	160	120	110	130	150	150	140	180	110	150	150	100	140	130	150	140	110	133
16	В	140	100	150	120	140	150	130	160	110	170	140	180	200	240	150	200	200	190	180	180	160	200	200	160	160	164
17	Н	60	85	110	170	140	120	120	120	160	110	110	130	90	100	130	140	80	110	110	110	90	60	130	120	130	113
18	F	230	220	240	220	250	300	220	250	230	300	270	260	250	240	290	270	220	320	230	330	320	310	230	310	200	260
19	G	210	170	290	260	190	210	240	250	260	200	180	160	140	210	150	190	210	190	160	210	150	210	200	190	220	202
20	В	100	110	270	50	70	90	120	90	130	150	140	150	140	100	120	80	150	170	220	100	130	110	180	120	90	127
21	С	240	300	290	250	230	160	160	290	210	300	320	220	250	100	100	120	130	180	130	320	140	290	210	200	180	213
22	D	130	280	150	180	170	160	210	180	210	120	170	140	170	150	210	250	130	180	120	190	110	190	190	140	170	172
23	E	130	90	120	110	100	100	110	110	100	110	90	120	120	110	80	120	110	130	250	260	80	70	140	110	100	119
24	A	290	230	240	240	220	230	280	180	260	250	220	220	210	220	160	120	130	120	150	160	190	200	130	140	260	202
25	Н	200	150	170	140	140	160	200	150	200	310	160	160	140	210	260	150	110	150	140	120	160	80	250	190	180	171
26	D	150	70	120	100	120	120	150	130	90	120	120	110	150	110	90	100	110	100	120	50	80	140	150	110	100	112
27	E	160	120	120	110	140	110	100	120	130	130	100	80	110	170	170	120	120	100	160	140	170	160	80	250	110	131
28	A	270	260	250	170	200	180	120	270	290	180	140	130	240	160	210	120	80	200	130	170	180	180	210	180	200	189
29	С	110	100	120	80	290	120	110	80	90	90	110	120	130	90	100	90	110	120	120	120	90	110	80	110	80	111
30	В	120	80	120	120	120	90	120	60	120	130	90	70	80	70	150	140	160	150	170	150	110	180	100	160	150	120
31	G	220	150	140	160	120	170	170	110	140	160	140	180	150	160	180	150	170	140	150	180	110	140	170	90	140	152
32	F	70	80	120	50	160	140	110	220	120	140	130	90	120	140	120	110	80	200	110	70	100	100	110	150	60	116

94 "General analysis of variance" 95 BLOCK Rep 96 TREATMENTS Trt"Year 97 COVARIATE "No Covariate" 98 ANOVA [PRINT= aovtable_information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; 1 99 PSE=diff.lsd; LSOLEVEL=5] lengthnoy1 4 = shure: a function2000

Analysis of variance

Variate: lengthnoy1

Source of	f d.f.	S.S.	m.s.	v.r.	F pr.
Rep stratu	. 3	4092.6	1364.2	1.89	
Rep."Unit Trt Year Trt.Year Residual	•	4391 783682 3739.7 32426.8	627.3 783682 534.2 720.6	0.87 1087.55 0.74	0.537 <.001 0.638
Total	63	828332			

Message: the following units have large residuals.

Rep 3 [•]un 81.1 approx. s.e. 22.5

Tables of means

Variate: lengthnoy1

Grand mean 260.6 Trt A

Grand m	ean 260.t	i											
	Trt	A 269.4	B 262.9	C 267.4	D 245.6	E 251.7	F 269.3	G 263.5	H 254.8				
	Year	1	2 371.2	3 149.9									
	Trt A C D E F G H	Year	1	2 369 385 384.2 350.9 371.3 372.7 370.6 366.1	3 169.9 140.7 150.6 140.4 132.1 165.8 156.3 143.5								
Least	Least significant differences of means (5% level)												

Table	Trt	Year	Trt
			Year
rep.	8	32	4
d.f.	45	45	45
l.s.d.	27.03	13.52	38.23

Iab	ie z.			ms	sinne	2 U I	aru	ala	101																		
Year 1 Plot	Trt	1	2	3	4	5	6	7	8	9	Numbe 10	r of Flov	wer Ste 12	ms per 13	Bulb, 2	25 Bulb: 15	s per Plo 16	t 17	18	19	20	21	22	23	24	25	Av
1	A	1	1	1	1	1	1	1	1	1	10	1	12	15	14	15	1	1/	10	19	1	1	1	1	1	1	AV 1
2	G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	Н	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	B	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11	A	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12 13	H C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14	E	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15	G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16	В	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17	H	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
18 19	G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20	B	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21	С	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
22	D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
23	E	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
24 25	A H	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
26	D	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
27	E	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
28	A	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
29	C	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
30 31	B G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
32	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Year 2											· · · · · · · · · · · · · · · · · · ·		·	me ner		5 Bulbe	per Plo	•								1	
Plot	Trt	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Av
1	A	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1										1.063
2	G	1	1	3	1	1	2	2	1	2	1	3	2	3							-						1.769
3	H D	1	1	1	1	1	1	1 2	1	1	1 2	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1.040 1.273
5	C	1	2	2	2	2	1	1	1	2	3	3	1	1	1	1	2	1	2	2	2	1	2	1	1	1	1.560
6	В	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.040
7	E	1	1	1	1	1	1	1	1	1	1	1	1	1													1.000
8	F	1	1	2	2	1	1	1	1	4	1	1	1	1	1	2	1	2	1	1	1	1	1	1	1	2	1.320
9 10	D	2	1	1	1	1	1	2	1	1	1	1	1	2	1	1	1	1	1	1	2	1	1	1	1	1	1.160 1.050
10	A	3	1	1	1	1	3	1	1	1	1	1	1	1	1	2	1	1	1	2	4	1	1	2	3	3	1.560
12	Н	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.040
13	С	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1							1.053
14	E	2	2	3	2	2	1	1	1	1	1	1	1	1	2	1	2	1	1	2	1	1	1	1	2	2	1.440
15 16	G B	1	1	1	1	1	1	1	1	1	2	1	1	1	2	1	1	1	1	1	1	1	1	1	2	1	1.120 1.063
17	H	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	3	1	1	1	1	1	1.160
18	F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.000
19	G	1	1	1	1	1	1	1	1	1	1	1	1	1													1.000
20	B	2	1	2	1	1	1	1	1	1	1	2	2	1	1	2	1	1	2	1	1	2	1	1	1	1	1.280
21 22	D	1	1	1	1	1	1	1	1	1	1	1	1	3	1	2	2	2	2	1	1	2	1	2	2	1	1.360 1.000
23	E	1	2	1	1	1	1	1	3	1	1	2	1	1	1	1	1	2	1	1	1	1	2	1	2	1	1.280
24	A	2	1	1	1	1	2	1	1	1	1	1	1	1	2	1	1	1	2	2	1	4	1	1	1	1	1.320
25	H	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	2		-							1.118
26 27	D	1	1 2	2	3	1	1	1	1	1	1 2	2	1	1	2	1	1	1 2	1 2	2	1	1	1	1	1	1	1.240 1.360
28	A	1	1	1	1	1	1	1	1	1	1	1	1	-	-	2		- 2	2	-	-		-		-	-	1.000
29	С	1	1	1	1	1	1	1	2	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1.080
30	В	1	1	1	1	1	1	1	1	2	1	2	2	1	1	2	1	3	1	1	1	1	1	3	1	3	1.400
31	G F	1	1	1	1	1	1	1	1	1 2	1	1	1 2	1	1 2	2	2	1	1	1	1	1	1 2	1	1	1	1.043
32	r	1	1	1	1	1	1	1	1	4								1	1	1	1	1	4	1	1	1	1.200
Year 3 Plot	Trt	1	2	3	4	5	6	7	8	9	Numb 10	er of Flo 11	wer Ste 12	ms per 13	Bulb, 2 14	5 Bulbs 15	per Plot 16	17	18	19	20	21	22	23	24	25	Av
	A	2	2	1	1	1	1	2	1	1	2	1	1	2	1	2	1	1	1	1	1	1	2	1	1	1	1.2800
	G	2	1	1	2	1	2	3	2	1	3	1	1	2	2	2	1	3	1	2	1	1	1	2	1	1	1.6000
	H D	2	1	2	1	2	2	1	1	1	1	1	1	3	1	2	2	1	2	1	1	2	2	2	1	1	1.4400 1.2000
	C D	1	1 2	1	2	2	2	1	1	1	1	1	2	1 2	1	1	1	1 2	1	1	1	1	1	1 2	1	2	1.2000
	B	1	1	1	2	2	1	1	1	1	2	2	1	1	1	1	1	1	2	1	1	1	1	1	2	2	1.2800
7	E	1	1	1	1	2	1	1	1	1	1	1	1	1	2	1	1	1	3	1	1	1	1	2	1	1	1.2000
	F	1	1	1	2	2	3	1	2	2	1	2	3	1	1	1	1	3	2	1	3	1	1	1	1	1	1.5600
9 10	D F	1	2	1	1	2	1	1	1	1	1	3	1	3	1	1	2	1 2	1	1	1	1	1	2	2	1	1.2800 1.1200
11	A	1	1	1	1	1	2	1	1	2	1	1	1	1	1	1	1	1	1	2	2	1	1	1	2	1	1.2000
	Н	1	1	1	2	1	1	3	1	1	3	1	2	1	1	2	1	1	3	1	2	1	2	1	1	2	1.4800
	C	1	1	1	1	1	1	1	1	1	1	2	1	3	2	2	1	1	1	1	2	1	1	1	2	1	1.2800
	E G	1	1 2	2	2	2	2	1	2	1	2	1	1	1	1	1	2	1	1	1	1	2	1	1 2	1	1	1.2800 1.3600
	B	1	2	1	2	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	2	2	1	1.2000
17	Н	1	3	1	2	1	1	2	5	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1.3600
	F	2	1	2	4	1	2	2	3	1	2	2	2	1	3	2	2	1	2	1	1	2	2	1	2	1	1.8000
	G B	3	2	3	1	1	2	1	2	3	1 2	1	1 2	1	1	1	1	1	3	2	3	1	1 2	1	1	1	1.5600 1.4000
	C	1	2	1	3	1	1	2	1	1	2	3	2	1	2	1	2	1	1	2	1	1	3	1	1	1	1.4000
	D	1	1	1	2	1	1	1	2	1	1	1	1	2	1	1	1	1	2	2	1	1	1	2	2	1	1.2800
	E	1	1	3	2	1	2	2	3	2	1	1	1	2	1	1	1	2	1	1	1	1	1	1	1	1	1.4000
	A H	2	1	2	1	2	2	1 2	1	1	2	1	1	1	2	1	1	2	1	1	1	1	2	1 2	2	3	1.4400 1.4800
	н D	1	3	1	2	1	1	3	1	3	1	1	1	1	1	1	1	1	1 2	2	3	1	1 3	1	1	1	1.4800
	E	1	2	2	1	2	2	1	2	2	1	1	1	1	2	2	1	1	1	1	1	2	1	1	1	1	1.3600
	А	2	1	1	1	1	2	1	2	1	1	1	1	1	3	1	1	1	2	1	1	2	1	1	1	1	1.2800
29	C	1	2	2	1	2	3	1	1	1	1	1	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1.2800
	B G	2	1	1	2	1	1	2	1	1	1 2	1	2	3	2	2	1	1	1	1	1	2	1	1	1	2	1.2800 1.4000
	F	1	1	2	1	4	1	1	1	1	1	1	2	4	2	1	3	1	1	1	1	2	1	3	2	1	1.6000

Table 2. Lincolnshire trial data for number of stems

- 100 "General analysis of variance" 101 BL.DCK Rep 102 TREATMENTS Trt"Year 103 CDVARIATE "No Covariate" 104 ANDVA (PRINT= aovtable; information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; 1 105 PSE=diff,Isd; LSDLEVEL=5] stems_per_bulb_noy1

Analysis of variance

Variate: stems_per_bulb_noy1

Source of d.f.	S.S.	m.s.	V.F.	F pr.

Rep stratu	3	0.07277	0.02426	0.77
Rep."Units" stra	tum			
Trt	- 7	0.11305	0.01615	0.52 0.818
Year	1	0.44377	0.44377	14.17 <.001
Trt.Year	7	0.26541	0.03792	1.21 0.317
Residual	45	1.40934	0.03132	

63 2.30434 Total

Message: the following units have large residuals.

 Rep 1*uni
 0.513
 арргок. s.e. 0.148

 Rep 2*un
 0.377
 арргок. s.e. 0.148

 Rep 2*un
 -0.347
 арргок. s.e. 0.148

Tables of means

Variate: stems_per_bulb_noy1

Grand mean 1.283								
Trt	а в 1.268	C 1.243	D 1.292	E 1.219	F 1.29	G 1.331	H 1.357	1.265
Year	1	2 1.20	3 1.366					
Trt A B C D E F G H	Year	1	2 1.236 1.196 1.263 1.168 1.27 1.143 1.233 1.089	3 1.3 1.29 1.32 1.27 1.31 1.52 1.48 1.44				

Table	Trt	Year	Trt
			Year
rep.	8	32	4
d.f.	45	45	45
l.s.d.	0.1782	0.0891	0.252

Final /	Assessm	ent 15/06/22	Coore (1 aboost		1m section (bulb	a par plat)		
Plot	Trt		2	3		5	Total Bulbs/Plot	Fresh weight of Bulbs (g)
	A	96	0	1	1	1	99	(2)
<u> </u>								346
2	G	52	1	0	1	0	54	218
3	H	86	0	0	1	0	87	297
4	D	130	0	0	0	0	130	443
5	С	11	0	2	0	0	13	373
6	В	114	0	1	0	0	115	354
7	E	159	0	0	0	0	159	458
8	F	92	1	0	1	0	94	372
9	D	93	0	0	0	0	93	321
10	F	149	0	0	0	0	149	438
11	A	74	1	0	0	0	75	336
12	н	105	0	0	0	0	105	416
13	С	151	1	0	0	0	152	574
14	E	77	4	0	0	0	81	343
15	G	117	0	0	0	0	117	389
16	в	146	2	0	0	0	148	449
17	н	90	2	0	0	0	92	350
18	F	132	0	0	0	0	132	545
19	G	147	2	0	0	0	149	451
20	в	93	0	1	0	0	94	339
21	c	130	1	0	0	0	131	419
22	D	109	6	0	0	0	115	355
23	E	87	0	0	0	0	87	313
24	A	111	0	0	0	0	111	344
25	н	120	0	0	0	0	120	330
26	D	91	0	0	0	0	91	345
27	E	116	0	0	0	0	116	455
28		89	0	1	0	0	90	255
29	c	89	2	0	0	0	91	315
30	в	112	0	0	0	0	112	437
31	G	111	0	0	0	0	111	312
32	F	91	0	0	0	0	91	325

Table 3. Lincolnshire trial data for number of bulbs, fresh weight of bulbs and incidence of basal rot.

- 80 "General analysis of variance"
- 81 BLOCK Rep
- 82 TREATMENTS Trt
- 83 COVARIATE "No Covariate"
- 84 ANOVA [PRINT=aovtable,information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; V
- 85 PSE=diff,Isd; LSDLEVEL=5] Total_Bulbs_Plot

Analysis of variance

Variate: Total_Bulbs_Plot

Source of d.f. (m.v.) s.s. F pr. m. s. V.T. Rep stratu 3 7148 2383 2.11 Rep."Units" stratum 6236 891 0.79 0.605 Trt 7 Residual 21 -64 23725 1130 Total 31 -64 28220

Message: the following units have large residuals.

 Rep 1'uni
 -41.3
 s.e. 15.7

 Rep 1'uni
 35.2
 s.e. 15.7

 Rep 1'uni
 -71.3
 s.e. 15.7

 Rep 1'uni
 60.7
 s.e. 15.7

 Rep 2'uni
 46.6
 s.e. 15.7

 Rep 2'uni
 -38.3
 s.e. 15.7

 Rep 2'uni
 -38.4
 s.e. 15.7

 Rep 3'uni
 -33.8
 s.e. 15.7

Tables of means

Variate: Total_Bulbs_Plot

Grand mean 106.4

Trt	A	В	С	D	E	F	G	н	
		93.8	117.2	96.8	107.2	110.7	116.5	107.7	101

Table	Trt
rep.	12
d.f.	21
l.s.d.	28.54

86 "General analysis of variance"

- 87 BLOCK Rep 88 TREATMENTS Trt
- 89 COVARIATE "No Covariate"
- 90 ANOVA [PRINT=aovtable,information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; I
- 91 PSE=diff,Isd; LSDLEVEL=5] Fresh_weight_of_Bulbs_g

Analysis of variance

Variate: Fresh_weight_of_Bulbs_g

Source of d.f.	(m. v	.)	S.S.	m.s.	V.F.	Fpr.
Rep stratu	3		57685	19228	3.27	,
Rep."Units" strat	um					
Trt	7		114769	16396	2.79	0.032
Residual	21	-64	123542	5883		
Total	31	-64	181292			

Message: the following units have large residuals.

Rep1*uni -106.7 s.e. 35.9 Rep 1°uni 94.8 s.e. 35.9 54.6 s.e. 35.5 83.7 s.e. 35.9 -77.7 s.e. 35.9 121.2 s.e. 35.9 -81.9 s.e. 35.9 111.2 s.e. 35.9 Rep1[•]uni Rep 2 un Rep2'un Rep2'un Rep 3 un Rep 3 un 94.5 s.e. 35.9 Rep 3°un -93.1 s.e. 35.9 Rep 4° un Rep 4° un 91.5 s.e. 35.9 -76.4 s.e. 35.9

Tables of means

Variate: Fresh_weight_of_Bulbs_g

Grand mean 375.5

B C D E F G H 320.4 394.7 420.1 366 392.2 419.9 342.6 348.3 Trt A

Least significant differences of means (5% level)

Table Trt 12 rep. d.f. 21 65.12 l.s.d.

		Stem Height (cm)						
Plot	Treatment							
101	Α	25	23	24				
102	F	24	24	25				
103	В	26	27	30				
104	E	23	24	25				
105	Н	26	24	24				
106	D	28	23	26				
107	С	26	24	28				
108	G	24	25	28				
201	D	24	25	26				
202	Н	31	25	23				
203	E	30	26	27				
204	С	27	28	26				
205	F	29	23	26				
206	В	27	23	25				
207	G	30	26	22				
208	Α	26	27	30				
301	Н	27	25	21				
302	D	28	25	24				
303	Α	30	25	23				
304	В	24	27	25				
305	F	28	27	26				
306	G	25	27	24				
307	E	28	25	24				
308	С	25	26	27				
401	Α	29	26	21				
402	F	25	25	24				
403	E	30	28	22				
404	D	27	27	23				
405	G	27	26	24				
406	С	26	26	24				
407	Н	29	27	28				
408	В	26	30	20				

Table 4. Cornwall trial data for stem length

70 "General analysis of variance" 71 BLOCK REP

72 TREATMENTS Treatment_1"YEAR 73 COVARIATE "No Covariate"

74 ANOVA (PRINT=aovtable,information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; V 75 PSE=diff,lsd; LSDLEVEL=5] Height

Analysis of variance

Variate: Height

Source of d.f.		S. S.	m.s.	V.T.	F pr.
REP strati	3	2.062	0.688	0.13	
REP."Units" stra	tum				
Treatmen	- 7	15,188	2.17	0.4	0.896
YEAR	1	9	9	1.67	0.203
Treatmen	- 7	9.75	1.393	0.26	0.967
Residual	45	242.938	5.399		
Total	63	278.938			

Message: the following units have large residuals.

REP 1°un	4.97	approx. s.e. 1.95
REP 2 ur	5.22	approx. s.e. 1.95
REP 4 [•] ur	-4.84	approx. s.e. 1.95

Tables of means

Variate: Height

Grand mean 25.22

Treatmen A	B 24.88	C 25.88	D 26.12	E 24.88	F 25.12	G 25	H 25.25 24.62
YEAR	1	2 25.59	3 24.84				
Treatmen YI A C D E F G H	EAR	1	2 25.25 26.75 25.75 25.75 24.75 26 25.25	3 24.5 25 26.25 24.75 24.5 25.25 24.5 24.5 24			

Table	Treatmen YB	EAR 1	Treatment_1
		```	YEAR
rep.	8	32	4
d.f.	45	45	45
l.s.d.	2.34	1.17	3.309

Plot         Treatment         Year 1         Year 2         Year           101         A         68         58         66           102         F         67         55         83           103         B         47         60         70           104         E         49         53         67           105         H         53         58         74           106         D         54         72         74	3
101         A         68         58         66           102         F         67         55         83           103         B         47         60         70           104         E         49         53         67           105         H         53         58         74	
103         B         47         60         70           104         E         49         53         67           105         H         53         58         74	
104         E         49         53         67           105         H         53         58         74	
105 H 53 58 74	
106 D 54 72 74	
107 C 53 49 83	
108 G 46 50 87	
201 D 54 64 75	
202 H 60 60 80	
203 E 51 60 87	
204 C 63 59 70	
205 F 44 56 70	
206 B 54 58 78	
207 G 53 54 76	
208 A 59 48 80	
301 H 65 58 75	
302 D 44 55 86	
303 A 55 50 70	
304 B 49 48 85	
305 F 40 60 74	
306 G 58 58 82	
307 E 43 55 87	
308 C 57 60 79	
401 A 59 60 72	
402 F 60 70 76	
403 E 47 61 70	
404 D 52 48 75	
405 G 45 55 58	
406 C 52 57 64	
407 H 57 63 88	
408 B 51 53 61	

Table 5. Cornwall trial data for population

76 "General analysis of variance" 77 BLOCK REP 78 TREATMENTS Treatmen_1"YEAR 79 COVARIATE "No Covariate" 80 ANOVA [PRINT= aovtable_information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; 1 81 PSE=diff.lsd; LSOLEVEL=5] pop

Analysis of variance

Variate: pop

Source of d.f.		S. S.	m.s.	v.r.	F pr.
REP strati	3	96.17	32.06	0.57	
REP. "Units" stra Treatmen YEAR Treatmen Residual	tum 7 1 7 45	309.11 5568.89 48.48 2516.08	44.16 5568.89 6.93 55.91	99.6	0.6 <.001 0.996

63 8538.73 Total

Message: the following units have large residuals.

REP 4 *un -15.83 approx. s.e. 6.27

Tables of means

Variate: pop

Grand mean 66.36

Treatmen A	В 63	C 64.12	D 65.12	E 68.62	F 67.5	G 68	н 65	69.5
YEAR	1	2 57.03	3 75.69					
Treatmen YEAF A B C	3	1	2 54 54.75 56.25	3 72 73.5 74				
DE			59.75	77.5				
F			57.25 60.25	77.75 75.75				
G H			54.25 59.75	75.75 79.25				

Table	Treatmen Y	EAR 1	Freatment_	1
		1	/EAR	
rep.	8	32	4	
d.f.	45	45	45	
l.s.d.	7.53	3.765	10.649	

Plot		Basal Rot%	Number of	Fresh Wt	Dry Wt	DM%
			Diseased			
	Treatment		Bulbs			
101	Α	0	1	722	237.8	32.9
102	F	0	0	787	254.2	32.3
103	В	0	0	678.2	218.5	32.2
104	E	0	0	786.7	264.5	33.6
105	Н	0	0	759.9	260.1	34.2
106	D	0	1	699.2	239.5	34.3
107	С	0	0	670.6	215.4	32.1
108	G	0	1	710.5	239.3	33.7
201	D	0	0	694.8	237.8	34.2
202	Н	0	0	665.4	234.2	35.2
203	E	0	0	790.7	204.3	25.8
204	С	0	0	708	231.6	32.7
205	F	0	0	916.4	319	34.8
206	В	0	0	707.5	243.2	34.4
207	G	0	0	753.6	258.3	34.3
208	Α	0	0	778.1	259.9	33.4
301	Н	0	0	757.9	277.6	36.6
302	D	0	0	779.9	261	33.5
303	Α	0	0	633.4	204.7	32.3
304	В	0	0	653	232	35.5
305	F	10	1	860.2	286.7	33.3
306	G	0	0	714.5	235	32.9
307	E	0	0	788.8	258	32.7
308	С	0	0	658.8	213.5	32.4
401	А	0	0	706	227.9	32.3
402	F	0	0	611.3	200.8	32.8
403	E	0	0	766.6	250.3	32.7
404	D	0	0	737.8	250.3	33.9
405	G	0	0	732.6	251.6	34.3
406	С	0	0	590.5	208.2	35.3
407	Н	0	0	701.3	234.6	33.5
408	В	0	0	573.8	198.2	34.5

Table 6. Cornwall trial data for number of bulbs, fresh weight of bulbs and incidence of basal rot.

91 "General analysis of variance"

- 92 BLOCK REP
- 93 TREATMENTS Treatment
- 94 COVARIATE "No Covariate"

95 ANOVA (PRINT=aovtable,information,means; FACT=32; CONTRASTS=7; PCONTRASTS=7; FPROB=yes; 96 PSE=lsd; LSDLEVEL=5] fresh_wt

#### Analysis of variance

#### Variate: fresh_wt

Source of variatic d.f.	(m. v	.)	S.S.	m.s.	V.T.	F pr.
REP stratum	3		71080	23693	7.1	7
REP."Units" stratum Treatment Residual	7 21	-64	216311 69401			5 <b>&lt;.001</b>
Total	31	-64	165474			

#### Message: the following units have large residuals.

REP 2 "units" 1	-63.2	s.e. 26.9	
REP 2 "units" 2	-85.8	s.e. 26.9	
REP 2 "units" 5	92.7	s.e. 26.9	
REP 3 "units" 3	-85.6	s.e. 26.9	
REP 3 "units" 5	57.5	s.e. 26.9	
REP 4 "units" 2	-138.2	s.e. 26.9	
REP 4 "units" 4	54.1	s.e. 26.9	

#### Tables of means

Variate: fresh_wt

Grand mean 721.7

Treatmen A	в	С	D	Е	F	G	н	
	709.9	653.2	657.1	727.9	783.1	793.6	727.8	721.1

includes a much lower rep 4

Table	Treatment
rep.	12
d.f.	21
l.s.d.	48.81

# Introduction – Section 4. The effects of NO₃ versus NH₄ based fertilisers / plant nutrients on plant growth and quality

Plants are known to affect substrate pH due to differences in uptake of cation and anion nutrients (Haynes, 1990; Lea-Cox *et al.*, 1996; Marschner, 1995), and work on protected ornamental species has examined the relationship between NO₃/NH₄ application ratio, anion/cation uptake ratio, rhizosphere pH and micronutrient solubility (Dikerson and Fisher, 2017). As has the fact that the way plants alter the rhizosphere pH varies at the cultivar level in some crops (Froehlich and Fehr, 1981; Saxena and Sheldrake, 1980).

Assimilation of NO₃ into NH₄ has to take place in plants and the process has a high energy requirement, so it is considered most energy efficient to supply N to plants in a mix of both NO₃ and NH₄. The aim of the work carried out in the study was to demonstrate the way pH changes in response to N when it is supplied as either NH₄ or NO₃, and how the impact is different in different plant species and how that might relate to the availability of other macro and micronutrients.

Due to the amount of literature available on this topic, the conclusion from the scoping study was that it was unnecessary to carry out in depth investigations and unrealistic to develop detailed recommendations for N-form application, however the production of best practice advice backed by demonstration trials would be of benefit.

The trial design took into consideration species which have differing imbalances in anion and cation uptake during growth and can subsequently suffer with different deficiencies due to changes in growing media pH, the current availability of commercial fertiliser formulations was also a consideration.

# Materials and methods

The investigation was untaken between May and August of 2020, in a glasshouse at NIAB's Cambridge trial site. The glasshouse was set to maintain a minimum temperature of 10 °C, no supplementary lighting was provided, and no shade screens were utilised. The trial was carried out on a tabletop bench fitted with Stal & Plast liners.

Crops with different nutritional requirements were selected to investigate the difference in response. Cyclamen has a lower nutrient requirement, pansy has a higher nutrient requirement and causes pH to increase over time, and geranium which drives pH down over time.

The test plants were as follows:

 Pansy 'Matrix® Blue Blotch' – grown at the trial site from commercial supplied seed by Ball Colegrave

- Geranium zonal 'Designer Scarlet Bright' obtained as plug plants from Ball Colegrave during week 20.
- Cyclamen F1 'Metis® White' obtained as plug plants from Ball Colegrave during week 20.



Figure 29. Overview of trial 3 set up, dated 12/08/2020.

Plants were transplanted into Soparco Duo 13 cm 5 deg (1 l) pots using a standard peat based growing media mix, the specification of which can be found in Table 17.

Table 17. G	Growing	media	specification.
-------------	---------	-------	----------------

Brand	ICL M2
pH range	5.3-6.0
Particle size	0-10 mm
Conductivity	228-414 µs
Nutrient added	192N 98P 319K

Irrigation to the trial was applied manually overhead using a lance. The water supply used was main supply for the area (hard water). Plants were irrigated according to need, with excess irrigation water freely draining to avoid cross contamination between treatments.

Three feed treatments were applied to the trial each with a different ratio of  $NH_4$  and  $NO_3$ , as shown in Table 18. All treatments provided 100 ppm N ( $NH_4/NO_3$ ), 45 ppm P,125 ppm K, 8 ppm Mg and trace elements.

NH ₄	NO ₃
0	100
20	80
30	70
	0 20

Table 18. Treatment list – ratio of N components used to achieve 100 ppm of N in feed.

The details of the feed components can be found in Tables 1 to 3 in Appendix 15 of the report.

When fertiliser straights with sulphate e.g., magnesium sulphate (MgS) are used to create the stock solutions, the potential for an increase of the media pH can be expected. To achieve the required Mg levels in all three stock feeds both MgS and magnesium nitrate (MgN) were used.

The three stock feeds were made up on 03/06/2020 and diluted at a rate of 5 ml to 1 l water (0.5% or 1:200).

Feeding started one week after potting and then on a weekly basis. At each feeding event 10 ml of the diluted solutions were applied manually by syringe to individual pots in the relevant treatments.

The trial consisted of 66 plants per species, 22 per feed treatment. They were arranged in replicated blocks to assist with application of feed and with sampling of growing media.

Observations were made throughout the trial on the incidence of deficiency symptoms, and those observed were noted and photographed.

Assessments were made on two occasions during the trial, this consisted of plant height or width (depending on species) measure in mm, a count of the number of leaves (cyclamen only), a count of the number of flowers and the fresh weight of the above ground growth in g.

Weekly observations on growing media EC and pH (SME) were made using EXTECH ExStik II meter. To maintain consistency, the SME sample was taken on the day that the feed was applied, but prior to its application.

A sample of growing media and plant tissue from each treatment was sent for laboratory analysis at the mid-point of the trial based on 10 randomly selected plants, final samples were taken from the remaining 12 plants.

# Results

The trends resulting from the use of different N form ratios in this trial were not as clear as anticipated. Three crops with different nutritional requirements were selected to illustrate the way different species react, however the response was not as expected.

Weekly observations of growing media pH for all species show an initial decline in value, followed by a general increasing trend in the final six weeks of the trial. The highest values for pH were observed in pansy, followed by geranium and the lowest was in cyclamen, with no overlap in values for the three different species. Within each species there is no consistent trend linking the pH value to the N-form ratio, so final pH does not appear to be lower with increasing or decreasing amounts of NH₄ in the feed.

	Crop		Cyclamen			Geranium			Pansy		
N	I form ratio NH4:NO3	0/100	20/80	30/70	0/100	20/80	30/70	0/100	20/80	30/7	
Date	10/06/2020	6.14	6.16	6.05	6.43	6.43	6.29	6.25	6.28	6.2	
	17/06/2020	6.15	6.11	6.04	6.18	6.17	6.17	6.12	6.14	6.1	
	24/06/2020*	6.01	5.91	5.02	6.03	6.01	6.03	5.57	5.71	5.9	
	01/07/2020	5.23	5.14	5.15	5.23	5.24	5.22	5.52	5.42	5.3	
	08/07/2020	5.75	5.77	5.78	5.78	5.77	5.78	5.77	5.79	5.7	
	15/07/2020	5.78	5.75	5.76	5.75	5.76	5.74	5.78	5.76	5.7	
	23/07/2020	6.33	6.36	6.33	6.81	6.87	6.72	6.83	6.87	6.8	
	30/07/2020	6.97	6.99	6.98	6.86	6.74	6.85	6.52	6.52	6.5	
	05/08/2020			No	observatio	on in this w	/eek				
	13/08/2020*	6.31	6.36	6.13	7.12	6.86	7.34	7.48	7.37	7.5	

Table 19. Results of observation on growing media pH over duration of the trial for all treatments.

*outdoor daytime temperature in excess of 30 °C during these weeks

All observations of growing media pH and EC can be seen in Tables 1, 2, and 3 of Appendix 16 of the report.

The results of the leaf tissue analysis at the mid-point and the end of the trial show a greater difference between species in SAP pH than observed in the growing media analysis. As expected, geranium has a low pH value, in this case below 4. For pansy it was in the range of 5.4-6.0 and cyclamen 5.1-5.2.

Species		(	Cyclamen		(	Geranium			Pansy	
Treatment		1	2	3	1	2	3	1	2	3
N form rati	o NH4:NO3	0/100	20/80	30/70	0/100	20/80	30/70	0/100	20/80	30/70
Plant asses	ssment (avera	ge)								
plant heig	ht/width (mm)	130.4	129.2	128.9	184.5	209.7	192.3	315.8	283.8	299.6
	Leaf number	11.1	13.5	16.1	-	-		-		-
fl	ower number	7.2	4.8	4.7	4.3	4.9	5.1	5.7	3.4	4.5
fre	esh weight (g)	30.0	25.8	26.2	54.3	57.8	51.8	105.3	95.3	92.6
Plant Tissu	ie analysis (m									
midpoint	pH	5.3	5.4	5.3	3.8	3.8	3.8	6.3	6.3	6.1
	NH4	49.3	59.3	49.7	140.0	136.1	153.9	43.7	29.1	22.7
	NO3	349.0	445.5	327.8	28.0	31.1	35.0	159.6	68.1	95.1
end point	pH	5.2	5.1	5.2	3.7	3.6	3.7	5.7	6.0	5.4
	NH4	27.2	29.1	31.0	38.5	42.2	36.0	10.3	14.9	14.0
	NO3	58.7	62.1	79.4	0.1	0.4	2.6	0.3	0.7	0.4
Growing m	edia analysis	(mg/l)								
midpoint	pH	5.9	5.7	5.6	5.8	5.8	5.9	6.1	6.2	6.1
	NH4	1.0	4.1	<0.6	0.8	0.9	2.0	<0.6	1.4	0.8
	NO3	137.5	153.0	193.3	87.2	61.8	54.0	19.1	21.1	29.7
	total sol N	138.5	157.2	193.3	88.0	62.7	56.0	19.6	22.5	30.5
end point	pН	6.1	6.1	5.9	6.3	6.4	6.5	6.4	6.4	6.6
	NH4	1.8	6.1	1.8	1.1	1.4	1.3	1.7	1.4	2.4
	NO3	24.6	50.3	46.5	<0.6	0.9	<0.6	2.7	2.0	3.7
	total sol N	26.4	56.3	48.3	1.1	2.3	1.5	4.4	3.4	6.1

Table 20. Summary of results for all treatments for plant fresh weight, growing media and leaf tissue analysis - samples taken 17/07/2020 for mid-point, 18/08/2020 for final observations.

The full results from the growing media and leaf tissue analysis are contained in Tables 4 and 5, Appendix 16 of the report.

In all treatments the main (or only) form of N was NO₃, however in Figure 30, very different ratios for the forms of N in the plant were seen. We would expect to find  $NH_4$  in the leaf tissue of all treatments even where N is only supplied as  $NO_3$  in the liquid feed ( $NH_4$  is present in the base feed) as reduction of  $NO_3$  to  $NH_4$  is an essential process.

At the mid-point of the trial, pansy, and cyclamen both had more  $NO_3$  than  $NH_4$ , and in geranium the opposite was observed. At the end point of the trial the trend was the same in cyclamen and geranium, but in pansy the values show virtually no  $NO_3$ .

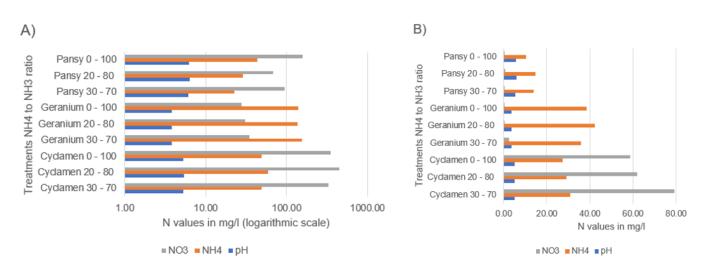



Figure 30. Results of leaf tissue analysis for NO₃, NH₄ and pH, samples from A) 17/07/2020 for mid-point observations, and B) 18/08/2020 for final observations.

The reduction of  $NO_3$  to  $NH_4$  produces positively charged hydrogen molecules which reduce cell pH, due to this we would anticipate the leaf tissue pH to be lowest where the results show the highest ratio of  $NH_4$  to  $NO_3$ . The results from the trial confirm this trend.

The effect of pH on levels of micronutrient in the leaf tissue should show increased levels of molybdenum (Mo) with increasing pH and increasing Fe and Mn with decreasing pH as shown in Figure 31. The lower pH in geranium does show generally higher Fe and Mn; Mo is highest in pansy with the highest pH. However, the trend is not an exact correlation as pansy with the 100% NO₃ feed has the highest levels for all three nutrients and has the second highest pH.

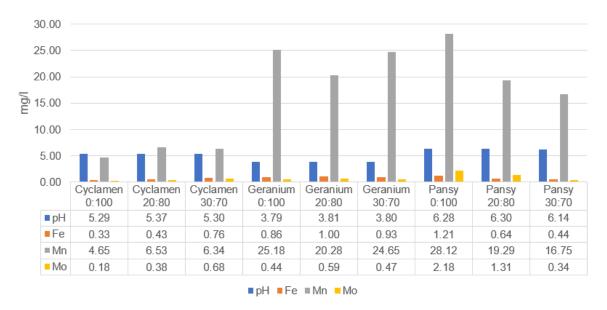



Figure 31. Leaf tissue analysis results for Fe, Mn and Mo in relation to pH, samples dated 17/07/2020.

Observations on plant size, number of flowers and fresh weight of above ground growth were taken during the trial. The data collected confirmed the visual conclusion that there was little impact on growth between the different treatments for each species, images from trial can be seen in Figure 32. In geranium, slightly greater plant height and fresh weight were observed in the 20:80 treatment, but no difference observed in flower stem number. In the three pansy treatments a slight increase in fresh weight was observed in the 0:100 treatment over the other two ratios, which was consistent with plant width observations at both the mid-point and end point of the trial. The full observation can be found in Tables 1, 2 and 3 of Appendix 17 of the report.

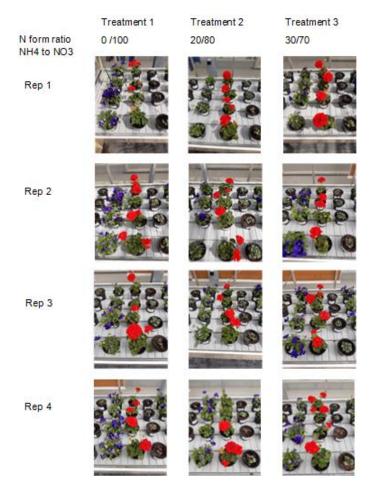



Figure 32. Trial images of all treatments dated 03/07/2020.

# Discussion

The form that N is supplied to the plant in, either as a positively or negatively charged ion  $(NH_4^+ vs. NO_3^-)$ , should influence the growing media pH as the plant exudes ions of the same charge during uptake. Feeds higher in positively charged  $NH_4$  ions should see declining growing media pH and those higher in negatively charged  $NO_3$  ions should see increasing pH.

In pansy the expected increase took place, but it was the same as in geranium, which was expected to have declining pH over the period of the trial. This should have been particularly obvious with the 30:70 treatment; the higher NH₄ content should give a greater decline in pH as the geraniums exude positive charged ions as the NH₄ is taken in.

From monitoring growing media pH in the trials of this project, it appears likely that the upward trend in growing media from the use of overhead irrigation and the water source (which is high in bicarbonate), has cancelled out the effect of the varying N-form ratios.

It is also possible that the ratios included in the trial are not sufficiently high in NH₄ to cause a significant decline in pH under the trial conditions. These ratios were selected as they are accessible to growers in the form of 'straights' or as part of prepared feeds; a higher NH₄ ratio may be detrimental in some crops but very unlikely to be used.

In contrast to the growing media, very different values for leaf tissue pH were observed. This was a reflection of the differences between species in the assimilation of NO₃ into NH₄ as part of normal metabolic processes. The low pH of the geranium leaf tissue correlates to the higher ratio of NH₄ to NO₃, and the opposite is true in cyclamen and pansy (Marschner 1994).

The impact of differences in ratio of NH₄ to NO₃ are more clearly demonstrated in other work carried out by NIAB in a separate commercial project, the results of which are reproduced here by kind permission of the customer. Plants of Petunia 'Surfinia® Purple' (Sunpurple) were grown in a range of commercially available and developmental peat-free growing medias. This was under the same glasshouse conditions as the experimental work for this project, using the same irrigation water, which is untreated mains water that is high in bicarbonate, no additional feed was applied. From the work in section 1 of this report looking at interactions between irrigation type in relation to the delivery of liquid feed, in petunia, with overhead watering and hard water it is expected that pH will rise over time.

Each of the growing medias in the trial was sampled and analysed in their unused condition and after 5 weeks of plant growth. Figure 33 below shows the values for pH at both points in the trial, and contrary to the expect trend, 2 treatments had a reduced pH level at the mid point of the trial. Treatments 13 and 14 showed a reduction of 1.2 and 1.4 respectively over the 5 week period. Treatment 18 did also have a reduction from 6.6 to 6.5 but in this context that was not considered of note as it would not have an impact of the availability of nutrients.

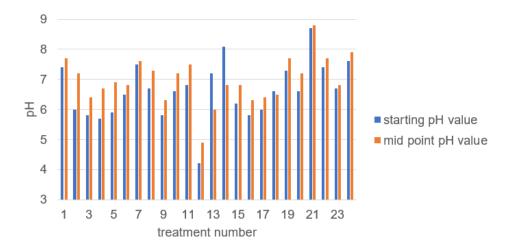



Figure 33. pH values obtained from laboratory analysis on a range of growing media products as unused material at the start of trial, samples dated 21/04/2021 and after 5 weeks of growth, samples dated 28/05/2021.

The extraction and analysis performed by NRM by adding a weight of sample equivalent to 60 ml volume to 300 ml of deionised water (ref BSEN 13652:2001).

When comparing these results with the values for N, these 2 growing media samples are the only ones that had a significantly higher proportion of  $NH_4$  to  $NO_3$  in the initial analysis, 3:1 in treatment 13, and in treatment 14 all N was in form of  $NH_4$ .

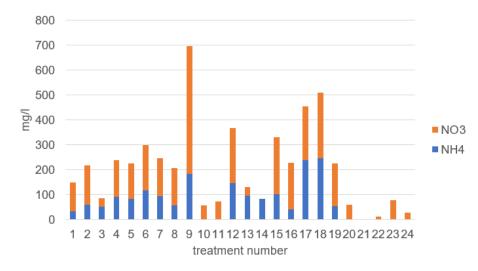



Figure 34. Results for N obtained from laboratory analysis on a range of growing media products as unused material at the start of trial, samples dated 21/04/2021.

Neither treatment 13 nor 14 has the highest total amount of NH₄ which highlights that it is the ratio that is of importance.

While the experimental work carried out as part of this project did not demonstrate the change in growing media pH as intended, the principle of changing the NH₄ to NO₃ ratio to influence pH is well document in other studies referenced in this report. Where pH is an issue in crops

for nutrient availability, investigating the N-form ratio in liquid feeds and base fertilisers has value. For growers transitioning from peat-based growing media to peat-reduced and peat-free mixes, the ability to influence pH via the use of different forms of N could be of increasing relevance. Water retention in peat-reduced and peat-free mixes can be an issue, leading to more frequent or higher volume irrigation. If using water high in HCO₃⁻, the increase in pH seen over time, would be exacerbated if no remedial action was taken. Using fertilisers higher in NH₄ or tailored to hard water (acidifying) are options to be considered to avoid problems with nutrient deficiency under high pH conditions.

# Conclusions

- Readily available (in trade) fertiliser ratios of NH₄ and NO₃ are unlikely to impact on growing media pH in hard water areas when applied little and often.
- High alkaline irrigation water can eliminate the drop in pH that can occur through use of acidic feed, or when growing 'acidifying' plants (e.g., geranium).
- The addition of a base fertiliser in growing media with a higher proportion of NH₄ can induce a drop in pH over the short term when growing plants which are natural inclined to increase pH (e.g., petunia).
- Accumulation of higher NH₄ levels when using capillary matting may make the use of high ratio NH₄ feeds undesirable where crops species are inclined to reduced pH e.g., geranium.
- Results for pH in leaf tissue analysis and in the growing media of the same crop can be very different. It is important to understand both to identify the potential for deficiency and toxicity in different species.

# Knowledge and Technology Transfer

How plants affect the rhizosphere during nutrient uptake – Talk by Hilary Papworth, AHDB event, Alternative growing media for ornamental plant production (10/07/2019)

# Glossary

Cations (positive +ve) and anions (negative -ve) are charged particles. These ions are the 'form' of the element that the plant is taking up. The ratio of the different cations and anions can alter the pH of growing media.

The rhizosphere is the area (region) of soil/substrate directly around the root. It is the zone where plant, soil, nutrients, micro-organisms, water interact. The rhizosphere will differ slightly in terms of pH and EC, than the rest of the rootzone.

# References

Dickson, R. and Fisher, P.R. (2017). Ammonium-nitrate ratio and cation/anion uptake affect the acidity or basicity of floriculture species. Acta Hortic. 1168, 135-142

Froehlich, D.M. and Fehr, W.R. (1981) Agronomic performance of soybeans with differing levels of iron deficiency chlorosis on calcareous soil. *Crop Sci*. 21:438–440.

Haynes, R.J. (1990). Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH. Plant Soil *126*, 247–264.

Lea-Cox, J.D., Stutte, G.W., Berry, W.L., and Wheeler, R.M. (1996). Charge balance–a theoretical basis for modulating pH fluctuations in plant nutrient delivery systems. Life Support Biosph Sci *3* (*1-2*), 53–59 PubMed

Marschner, H. (1995). Mineral Nutrition of Higher Plants, 2nd edn (San Diego, CA, USA: Academic Press).

Saxena, N. and Sheldrake, A.R. (1980). Iron chlorosis in chickpea (*Cicer arietinum* L.) grown on high pH calcareous vertisol. *Field Crops Res.* 3:211–214

# Appendices

Appendix 15: Feed

# Table 1. Feed calculations for 0:100 treatment

Liquid Feed specification 0:100													
			Feed &	ppm/mg/l									
Target	Water	Feed	Water	(1:200 dilution)									
70ppm NO3-	8.5	92.04	100.54	100 54									
30ppm NH4+	N/A	0	0	100.54									
45ppm P	1	44	45	45									
125ppm K	2	115	117	117									
8ppm Mg	3.6	4.4		8									

Hortifeeds TE BEMIX - 1.50% B, 2.93% EDTA-Cu, 5.78% EDTA-Fe, 2.93% EDTA-Mn, 0.04% Mo and 1.04% EDTA-Zn.

# Table 2. Feed calculations for 20:80 treatment

Liquid Feed specification 20:80													
Target	Water	Feed	Feed & Water	ppm/mg/l (1:200 dilution)									
80ppm NO3-	8.5	73.1	81.6										
20ppm NH4+	N/A	18.1	18.1	99.7									
45ppm P	1	44	45	45									
125ppm K	2	123	125	125									
8ppm Mg	3.6	4.4	8	8									

Hortifeeds TE BEMIX - 1.50% B, 2.93% EDTA-Cu, 5.78% EDTA-Fe, 2.93% EDTA-Mn, 0.04% Mo and 1.04% EDTA-Zn.

# Table 3. Feed calculations for 30:70 treatment

Liquid Feed specification 30:70													
			Feed &	ppm/mg/l,									
Target	Water	Feed	Water	(1:200 dilution)									
70ppm NO3-	8.5	67.83	76.33	106.22									
30ppm NH4+	N/A	29.89	29.89	100.22									
45ppm P	1	44	45	45									
125ppm K	2	121.85	123.85	123.85									
8ppm Mg	3.6	4.4	8	8									

Hortifeeds TE BEMIX - 1.50% B, 2.93% EDTA-Cu, 5.78% EDTA-Fe, 2.93% EDTA-Mn, 0.04% Mo and 1.04% EDTA-Zn.

Appendix 16. Leaf tissue and growing media analysis results

Treatment	1	2	3	Treatment	1	2	3
NH4:NO3 ratio	0-100	20-80	30-70	NH4:NO3 ratio	0-100	20-80	30-70
10/06/2020	6.14	6.16	6.05	10/06/2020	1163	1244	1351
17/06/2020	6.15	6.11	6.04	17/06/2020	1088	1621	1590
24/06/2020	6	5.9	5	24/06/2020	1083	1938	1301
01/07/2020	5.23	5.14	5.15	01/07/2020 15/07/2020	1734 1318	2850 1361	2780 1389
15/07/2020	5.76	5.75	5.78	23/07/2020	690	670	656
23/07/2020	6.33	6.36	6.33	30/07/2020	996	1154	1212
30/07/2020	6.97	6.99	6.98	06/08/2020	758	1615	1968
13/08/2020	6.31	6.34	6.13	13/08/2020	896	761	1253

Table 1. Observations on growing media pH and EC (SME) in cyclamen treatments	Table 1.	Observations on	growing media	pH and EC (SM	IE) in cyclamer	treatments.
-------------------------------------------------------------------------------	----------	-----------------	---------------	---------------	-----------------	-------------

Table 2. Observations on growing media pH and EC (SME) in geranium treatments.

pH level in growing	ng media i	n Geraniu	m treatments	EC (in µS) level	in growing	g media in	Geranium	treatments
Treatment	1	2	3	Treatment	1	2	3	
				NH4:NO3 ratio	0-100	20-80	30-70	
NH4:NO3 ratio	0-100	20-80	30-70	10/06/2020	1042	806	663	
10/06/2020	6.43	6.43	6.29	17/06/2020	546	1007	949	
17/06/2020	6.18	6.17	6.17	24/06/2020	488	636	464	
24/06/2020	6	6	6	01/07/2020	1276	896	1125	
01/07/2020	5.23	5.24	5.22	15/07/2020	362	268	312	
15/07/2020	5.75	5.76	5.74	23/07/2020	429	434	441	
23/07/2020	6.81	6.87	6.72	30/07/2020	639	521	439	
30/07/2020	6.86	6.74	6.85	06/08/2020	445	259	381	
13/08/2020	7.12	6.86	7.34	13/08/2020	218	344	220	

# Table 3. Observations on growing media pH and EC (SME) in pansy treatments.

pH level in growing	g media in	Pansy tre	atments	EC (in µS) level in growing media in Pan	sy treatments
Treatment	1	2	3	Treatment 1 2	3
NH4:NO3 ratio	0-100	20-80	30-70	NH4:NO3 ratio 0-100 20-80	30-70
10/06/2020	6.25	6.28	6.25	10/06/2020 1148 1692	1121
17/06/2020	6.12	6.14	6.17	17/06/2020 873 956	775
24/06/2020	5.5	5.7	5.9	24/06/2020 393 584	533
01/07/2020	5.52	5.42	5.33	01/07/2020 989 1128	1578
15/07/2020	5.78	5.76	5.75	15/07/2020 231 200	221
23/07/2020	6.81	6.87	6.72	23/07/2020 250 224	237
30/07/2020	6.52	6.52	6.5	30/07/2020 325 205	203
				06/08/2020 205 212	262
13/08/2020	7.48	7.37	7.55	13/08/2020 212 195	229

# Table 4. Laboratory analysis of growing media.

bservations on Gro		anaiyoio	Jumpicu	CONTRACT				RESULTS (are expressed as mg/l)													
Treatment name	NH4:NO		EC		dry	dry									total sol						
rreatment name	3	pН	@20c	density	matter	density	CI	Р	K	Mg	Ca	Na	NH4	NO3	N	S (SO4)	В	Cu	Mn	Zn	Fe
Cyclamen 3	30:70	5.6	616	602	25.1	151.1	132.5	84.3	255.4	159.4	116.6	73	<0.6	193.3	193.3	396.8	0.25	0.03	0.79	0.1	0.79
Cyclamen 2	20:80	5.7	575	632	23	145.4	150	77.4	248.9	141.4	102.3	77.3	4.1	153	157.2	376.1	0.26	0.04	0.61	0.1	0.56
Cyclamen 1	0:100	5.9	581	667	24.5	163.4	157.8	93.6	266.8	143	102.4	81.8	1	137.5	138.5	451.1	0.28	0.04	0.51	0.13	0.55
Geranium 3	30:70	5.9	390	639	23.5	150.2	114.9	49.3	114.9	93.8	70	75.4	2	54	56	474.3	0.33	0.04	0.33	0.27	0.71
Geranium 2	20:80	5.8	355	589	22.6	133.1	119	38.7	97.3	90.5	68.2	69.7	0.9	61.8	62.7	399.2	0.19	0.03	0.32	0.05	0.72
Geranium 1	0:100	5.8	409	612	22.1	135.3	133.6	43.1	114.7	106.8	83.5	74.5	0.8	87.2	88	416.8	0.21	0.02	0.39	0.11	0.65
Pansy 3	30:70	6.1	266	669	20.9	139.8	90.6	27.7	75.5	53.4	45.5	59.3	0.8	29.7	30.5	295.8	0.18	0.03	0.22	0.08	0.6
Pansy 2	20:80	6.2	186	688	20.2	139	82.7	26.7	65.6	46.5	43.9	60.3	1.4	21.1	22.5	298.5	0.17	0.02	0.18	0.04	0.55
								00.7	<b>C 4 0</b>	00.7	00.7	45.4	-0.0	40.4		004.0	0.45	0.00	0.16	0.00	0.45
Pansy 1	0:100	6.1	213	659	18.1	119.3	56.2	20.7	51.9	38.7	32.7	45.4	<0.6	19.1	19.6	231.8	0.15	0.03	0.16	0.06	0.4
Pansy 1	wing media		, sampled		!0		56.2	20.7	51.9	38.7	32.7	45.4			re expre	231.8 ssed as m		0.03	0.10	0.06	0.45
,	wing media NH4:NO	analysis	, sampled EC	03/07/202	10 dry	dry							RE	SULT <mark>S (</mark> a	<b>re expre</b> total sol	ssed as m	g/l)				
bservations on Gro Treatment name	wing media NH4:NO 3	analysis pH	sampled EC @20c	03/07/202 density	0 dry matter	dry density	CI	Р	к	Mg	Са	Na	RE NH4	SULTS (a NO3	<b>re expre</b> total sol N	ssed as m	g/l) B	Cu	Mn	Zn	Fe
bservations on Gro Treatment name Cyclamen 3	wing media NH4:NO 3 30:70	analysis pH 5.9	sampled EC @20c 301	03/07/202 density 412	0 dry matter 31.1	dry density 128.1	Cl 92.5	P 43	<u>К</u> 66.7	Mg 65.3	Ca 62.3	Na 50.6	RE NH4 1.8	SULTS (a NO3 46.5	re expre total sol N 48.3	ssed as m S (SO4) 266.4	g/l) B 0.19	Cu 0.02	<u>Mn</u> 0.07	Zn <0.02	Fe 0.19
bservations on Gro Treatment name Cyclamen 3 Cyclamen 2	wing media NH4:NO 3 30:70 20:80	analysis pH 5.9 6.1	sampled EC @20c 301 313	03/07/202 density 412 445	0 dry matter 31.1 26.6	dry density 128.1 118.4	Cl 92.5 113.3	P 43 46.1	К 66.7 91	Mg 65.3 62.7	Ca 62.3 58.9	Na 50.6 59.6	RE NH4 1.8 6.1	SULTS (a NO3 46.5 50.3	re expre total sol N 48.3 56.3	ssed as m S (SO4) 266.4 260.6	<b>g/l)</b> B 0.19 0.22	Cu 0.02 0.02	Mn 0.07 0.02	Zn <0.02 0.03	Fe 0.19 0.15
bservations on Gro Treatment name Cyclamen 3 Cyclamen 2 Cyclamen 1	wing media NH4:NO 3 30:70 20:80 0:100	analysis pH 5.9 6.1 6.1	sampled EC @20c 301 313 262	03/07/202 density 412 445 466	dry matter 31.1 26.6 27.4	dry density 128.1 118.4 127.7	CI 92.5 113.3 101.7	P 43 46.1 40.3	K 66.7 91 64.6	Mg 65.3 62.7 50.4	Ca 62.3 58.9 45.3	Na 50.6 59.6 54.6	RE NH4 1.8 6.1 1.8	SULTS (a NO3 46.5 50.3 24.6	re expre total sol N 48.3 56.3 26.4	ssed as m S (SO4) 266.4 260.6 242.3	g/l) B 0.19 0.22 0.2	Cu 0.02 0.02 0.01	Mn 0.07 0.02 <0.01	Zn <0.02 0.03 <0.02	Fe 0.19 0.15 0.16
bbservations on Gro Treatment name Cyclamen 3 Cyclamen 2 Cyclamen 1 Geranium 3	wing media NH4:NO 3 30:70 20:80 0:100 30:70	analysis pH 5.9 6.1 6.1 6.5	sampled EC @20c 301 313 262 142	03/07/202 density 412 445 466 545	dry matter 31.1 26.6 27.4 24.7	dry density 128.1 118.4 127.7 134.6	Cl 92.5 113.3 101.7 65.6	P 43 46.1 40.3 7.2	К 66.7 91	Mg 65.3 62.7 50.4 18.8	Ca 62.3 58.9 45.3 22	Na 50.6 59.6 54.6 41.2	RE NH4 1.8 6.1 1.8 1.3	SULTS (a NO3 46.5 50.3 24.6 <0.6	re expre total sol N 48.3 56.3 26.4 1.5	ssed as m S (SO4) 266.4 260.6 242.3 122.9	g/l) B 0.19 0.22 0.2 0.2 0.16	Cu 0.02 0.02 0.01 0.01	Mn 0.07 0.02 <0.01 <0.01	Zn <0.02 0.03 <0.02 <0.02	Fe 0.19 0.15 0.16 0.18
bbservations on Gro Treatment name Cyclamen 3 Cyclamen 2 Cyclamen 1 Geranium 3 Geranium 2	wing media NH4:NO 3 30:70 20:80 0:100 30:70 20:80	analysis pH 5.9 6.1 6.1 6.5 6.4	sampled EC @20c 301 313 262 142 128	03/07/202 density 412 445 466 545 450	dry matter 31.1 26.6 27.4 24.7 24.6	dry density 128.1 118.4 127.7 134.6 110.7	Cl 92.5 113.3 101.7 65.6 59	P 43 46.1 40.3 7.2 5.1	K 66.7 91 64.6 6.1 7	Mg 65.3 62.7 50.4 18.8 15.7	Ca 62.3 58.9 45.3 22 19.6	Na 50.6 59.6 54.6 41.2 32.7	RE NH4 1.8 6.1 1.8 1.3 1.4	SULTS (a NO3 46.5 50.3 24.6 <0.6 0.9	re expre total sol N 48.3 56.3 26.4 1.5 2.3	ssed as m S (SO4) 266.4 260.6 242.3 122.9 115	g/l) 0.19 0.22 0.2 0.16 0.13	Cu 0.02 0.02 0.01 0.01 0.02	Mn 0.07 0.02 <0.01 <0.01 <0.01	Zn <0.02 0.03 <0.02 <0.02 <0.02	Fe 0.19 0.16 0.16 0.18 0.17
bbservations on Gro Treatment name Cyclamen 3 Cyclamen 2 Cyclamen 1 Geranium 3 Geranium 2 Geranium 1	wing media NH4:NO 3 30:70 20:80 0:100 30:70 20:80 0:100	analysis pH 5.9 6.1 6.1 6.5 6.4 6.3	sampled EC @20c 301 313 262 142 128 116	03/07/202 density 412 445 466 545 450 450	dry matter 31.1 26.6 27.4 24.7 24.6 23	dry density 128.1 118.4 127.7 134.6 110.7 103.5	Cl 92.5 113.3 101.7 65.6 59 56.5	P 43 46.1 40.3 7.2 5.1 2.4	K 66.7 91 64.6	Mg 65.3 62.7 50.4 18.8 15.7 16	Ca 62.3 58.9 45.3 22 19.6 17.3	Na 50.6 59.6 54.6 41.2 32.7 36.4	RE NH4 1.8 6.1 1.8 1.3 1.4 1.1	SULTS (a NO3 46.5 50.3 24.6 <0.6 0.9 <0.6	re expre total sol N 48.3 56.3 26.4 1.5 2.3 1.1	ssed as m S (SO4) 266.4 260.6 242.3 122.9 115 108.5	g/l) 0.19 0.22 0.2 0.16 0.13 0.11	Cu 0.02 0.02 0.01 0.01 0.02 <0.01	Mn 0.07 0.02 <0.01 <0.01 <0.01 <0.01	Zn <0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02	Fe 0.19 0.16 0.16 0.18 0.17 0.14
bbservations on Gro Treatment name Cyclamen 3 Cyclamen 2 Cyclamen 1 Geranium 3 Geranium 2	wing media NH4:NO 3 30:70 20:80 0:100 30:70 20:80 0:100 30:70	analysis pH 5.9 6.1 6.1 6.5 6.4 6.3 6.6	sampled EC @20c 301 313 262 142 128 116 96	03/07/202 density 412 445 466 545 450 450 450	dry matter 31.1 26.6 27.4 24.7 24.6 23 28.2	dry density 128.1 118.4 127.7 134.6 110.7 103.5 126.9	Cl 92.5 113.3 101.7 65.6 59 56.5 29.6	P 43 46.1 40.3 7.2 5.1 2.4 2.8	K 66.7 91 64.6 6.1 7 3.2 7	Mg 65.3 62.7 50.4 18.8 15.7 16 7.3	Ca 62.3 58.9 45.3 22 19.6 17.3 10.4	Na 50.6 59.6 54.6 41.2 32.7 36.4 35.6	RE NH4 1.8 6.1 1.8 1.3 1.4 1.1 2.4	SUL TS (a NO3 46.5 50.3 24.6 <0.6 0.9 <0.6 3.7	re expre total sol N 48.3 56.3 26.4 1.5 2.3 1.1 6.1	ssed as m 266.4 260.6 242.3 122.9 115 108.5 84.5	g/l) B 0.19 0.22 0.2 0.16 0.13 0.11 0.1	Cu 0.02 0.02 0.01 0.01 0.02 <0.01 0.02	Mn 0.07 0.02 <0.01 <0.01 <0.01 <0.01 <0.01	Zn <0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	Fe 0.19 0.16 0.16 0.17 0.14 0.23
bservations on Gro Treatment name Cyclarnen 3 Cyclarnen 2 Cyclarnen 1 Geranium 3 Geranium 2 Geranium 1	wing media NH4:NO 3 30:70 20:80 0:100 30:70 20:80 0:100	analysis pH 5.9 6.1 6.1 6.5 6.4 6.3	sampled EC @20c 301 313 262 142 128 116	03/07/202 density 412 445 466 545 450 450	dry matter 31.1 26.6 27.4 24.7 24.6 23	dry density 128.1 118.4 127.7 134.6 110.7 103.5	Cl 92.5 113.3 101.7 65.6 59 56.5	P 43 46.1 40.3 7.2 5.1 2.4	K 66.7 91 64.6 6.1 7	Mg 65.3 62.7 50.4 18.8 15.7 16	Ca 62.3 58.9 45.3 22 19.6 17.3	Na 50.6 59.6 54.6 41.2 32.7 36.4	RE NH4 1.8 6.1 1.8 1.3 1.4 1.1	SULTS (a NO3 46.5 50.3 24.6 <0.6 0.9 <0.6	re expre total sol N 48.3 56.3 26.4 1.5 2.3 1.1	ssed as m S (SO4) 266.4 260.6 242.3 122.9 115 108.5	g/l) 0.19 0.22 0.2 0.16 0.13 0.11	Cu 0.02 0.02 0.01 0.01 0.02 <0.01	Mn 0.07 0.02 <0.01 <0.01 <0.01 <0.01	Zn <0.02 0.03 <0.02 <0.02 <0.02 <0.02 <0.02	Fe 0.19 0.19 0.19 0.19 0.19 0.14

The extraction is performed by adding a weight of sample equivalent to 60mls volume to 300mls of deionised water (ref BSEN 13652:2001).

# Table 5. Laboratory analysis of leaf tissue (SAP).

Observations on leaf tissue analysis, sampled 03/07/2020

			RESULTS (are expressed as mg/l)														
Treatment name	NH4:NO3	PH	$\rm NH_4$	$NO_3$	AI	В	Ca	Cu	Fe	к	Mg	Mn	Мо	Na	Ρ	S	Zn
Cyclamen 3	30:70	5.30	49.68	327.78	0.26	3.33	696	0.56	0.76	5046	353.11	6.34	0.68	558.33	275.45	568.01	3.22
Cyclamen 2	20:80	5.37	59.28	445.50	0.24	3.87	737	0.23	0.43	5695	514.47	6.53	0.38	744.69	213.57	721.38	3.09
Cyclamen 1	0:100	5.29	49.26	349.02	0.27	3.82	513	0.18	0.33	4922	323.54	4.65	0.18	633.46	266.94	663.65	2.99
Geranium 3	30:70	3.80	153.90	34.98	0.31	4.38	73	0.42	0.93	2637	803.15	24.65	0.47	228.47	640.73	78.52	5.58
Geranium 2	20:80	3.81	136.14	31.08	0.41	4.15	148	0.45	1.00	2588	646.95	20.28	0.59	218.98	541.41	75.74	5.60
Geranium 1	0:100	3.79	139.98	28.02	0.39	4.26	200	0.30	0.86	3089	706.20	25.18	0.44	254.01	629.02	88.75	6.14
Pansy 3	30:70	6.14	22.68	95.10	0.17	2.61	947	0.28	0.44	2566	1284.09	16.75	0.34	77.11	875.67	382.99	2.30
Pansy 2	20:80	6.30	29.10	68.10	0.32	4.21	1064	0.43	0.64	2723	1382.82	19.29	1.31	109.91	822.10	399.03	3.50
Pansy 1	0:100	6.28	43.70	159.60	0.45	4.36	1498	0.96	1.21	3329	2038.50	28.12	2.18	114.83	1173.44	535.83	3.95

Observations on leaf tissue analysis, sampled 03/08/2020

								R	ESULTS	6 (are e)	kpressed a	as mg/l)					
Treatment name	NH4:NO3	PH	$\rm NH_4$	$NO_3$	AI	В	Ca	Cu	Fe	К	Mg	Mn	Мо	Na	Р	S	Zn
Cyclamen 3	30:70	5.23	30.96	79.37	0.22	4.16	688	0.08	0.34	6037	403.95	5.74	0.01	774.91	219.76	757.85	3.26
Cyclamen 2	20:80	5.12	29.10	62.09	0.16	3.83	509	0.07	0.28	5735	361.76	5.26	0.01	739.92	194.73	751.89	3.02
Cyclamen 1	0:100	5.24	27.24	58.67	0.17	3.84	476	0.08	0.25	5915	300.47	4.65	0.01	749.37	194.85	848.53	2.97
Geranium 3	30:70	3.73	36.00	2.57	0.36	4.99	548	0.15	0.87	2008	878.77	34.29	0.01	371.85	525.25	80.13	6.16
Geranium 2	20:80	3.57	42.24	0.37	0.34	4.96	580	0.14	0.88	1717	968.06	36.21	0.01	434.17	544.45	84.35	5.25
Geranium 1	0:100	3.66	38.52	0.14	0.27	4.35	240	0.09	0.55	1575	807.94	28.60	0.01	357.40	477.42	66.97	4.80
Pansy 3	30:70	5.43	13.98	0.43	0.10	2.27	1060	0.29	0.35	1350	1070.35	15.56	0.12	91.35	446.45	173.82	2.45
Pansy 2	20:80	5.97	14.88	0.72	0.14	2.37	1056	0.41	0.48	1416	1052.61	17.20	0.30	105.88	407.30	134.76	2.68
Pansy 1	0:100	5.74	10.26	0.34	0.13	2.18	881	0.24	0.32	799	862.37	14.16	0.19	79.82	322.53	120.91	2.36

# Appendix 17: Trial observations and data

### Table 1. Observations on geranium.

Geranium plant h		Treatment	
	1	2	3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	170	145	170
	95	130	130
	130	130	175
	160	175	175
	165	160	140
	160	165	145
	170	160	140
	175	130	175
	180	160	165
	160	160	140
	140	170	155
	190	130	165
	160	150	185
	140	150	155
	130	190	155
	145	175	160
	160	170	150
	140	210	180
	135	150	120
	165	160	150
	130	150	155
	150	150	160
SE	21.3	19.9	16.6
Average	152.3	157.7	156.6

Geranium plant height observations in mm 03/08/202				
	Treatment	Treatment	Treatment	
	1	2	3	
N form ratio				
NH4:NO3	0 - 100	20 - 80	30 - 70	
Observations	172	205	175	
	175	255	203	
	245	221	150	
	228	229	235	
	190	255	205	
	170	130	165	
	195	175	190	
	145	225	245	
	150	240	180	
	180	185	220	
	180	196	155	
		200	185	
SE	29.9	36.0	30.3	
Average	184.5	209.7	192.3	

Geranium number of flower obs	servations, 03/07/2020
Treatment	Treatment Treatment

	Treatment	I reatment	Treatment
N form ratio		-	
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	3	2	3
	3	4	2
	4	2	5
	3	2	3
	2	3	2
	2	3	2
	3	4	2
	3	1	2
	2	2	4
	1	3	2
	2	2	2
	4	1	2
	2	5	3
	2	2	2
	3	2	2
	4	2	3
	4	2	2
	1	3	3
	2	2	2
	1	3	2
	3	3	2
		1	3
SE	1.0	1.0	0.8
Average	2.6	2.5	2.5

Geranium number of flower		
Treatment	Treatment	Treatment

Treatment	Ireatment	Ireatment
1	2	3
0 - 100	20 - 80	30 - 70
3	4	5
3	7	4
5	4	3
7	6	7
3	4	3
5	3	4
5	4	9
4	8	7
4	4	6
3	6	3
3	5	5
6	4	
1.4	1.5	2.0
4.3	4.9	5.1
	1 0 - 100 3 5 7 3 5 5 4 4 3 3 3 6 1.4	1         2           0 - 100         20 - 80           3         4           3         7           5         4           7         6           3         4           5         3           5         4           4         8           4         4           3         6           3         5           6         4           1.4         1.5

Geranium fresh weight observations in grams, 03/08/2020

	Treatment	Treatment	Treatment
	1	2	3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	48	58	58
	64	83	57
	67	50	44
	69	64	67
	46	37	55
	49	49	36
	61	33	62
	43	81	58
	54	71	39
	54	58	51
	47	59	41
	50	50	54
SE	8.8	15.5	9.7
Average	54.3	57.8	51.8

# Table 2. Observations on cyclamen.

Cyclamen plant width observations in mm 03/07/2020

			Treatment
	1	2	3
N form ratio		~~ ~~	~~ ~~
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	60	65	80
	75	65	70
	50	111	75
	72	96	83
	71	91	79
	91	80	90
	95	100	95
	90	87	73
	60	78	83
	100	70	67
	96	75	74
	67	83	76
	70	76	76
	74	80	69
	60	80	74
	80	66	76
	82	45	100
	80	62	80
	102	80	76
	81	82	60
	66	70	93
			72
SE	14.5	14.4	9.5
Average	77.2	78.2	78.2

Cyclamen plant width observations in mm 03/08/2020

	Treatment 1	Treatment 2	Treatment 3
N form ratio	-		
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	88	80	140
	131	76	130
	172	170	160
	135	163	160
	95	140	118
	160	125	100
	130	150	147
	155	138	120
	132	114	142
	106	136	126
			132
			72
SE	27.7	31.6	24.9
Average	130.4	129.2	128.9
			-

. .

	Treatment 1	Treatment 2	Treatment 3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	3	9	20
	4	4	4
	2	21	17
	9	19	24
	20	25	14
	5	15	27
	19	24	32
	22	13	15
	4	16	21
	21	12	18
	16	17	12
	3	15	16
	14	8	15
	17	7	11
	3	13	10
	15	4	20
	10	16	22
	10	8	16
	15	12	11
	6	12	7
	14		17
	12		5
SE	6.6	5.9	6.9
Average	11.1	13.5	16.1

Cyclamen fresh weight observations in grams, 03/08/2020 Treatment Treatment Treatment

	1	2	3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	10	5	29
	31	7	25
	41	56	44
	35	48	45
	14	27	21
	46	19	17
	35	34	24
	29	28	17
	26	24	35
	33	10	25
			24
			8
SE	11.1	16.9	10.9
Average	30.0	25.8	26.2

Cyclamen number of flower observations, 03/08/2020	
Treatment Treatment Treatment	-

4		
1	2	3
0 - 100	20 - 80	30 - 70
9	0	<u>30 - 70</u> 3
0	0	0
5	9	0
1	9	10
13	1	0
0	0	3
9	0	7
0	1	0
6	4	0
0	5	7
		1
		2
4.8	3.8	3.4
4.3	3.6	2.8
	9 0 5 1 13 0 9 0 6 0 4.8	9         0           0         0           5         9           1         9           13         1           0         0           9         0           0         1           6         4           0         5           4.8         3.8

# Table 3. Observations on pansy.

Pansy plant widt			
		Treatment	
	1	2	3
N form ratio NH4:NO3	0 100	20 00	20 70
Observations	0 - 100	20 - 80	30 - 70
Observations	200	160	180
	220	180	165
	250	160	180
	220	185	160
	170	145	230
	225	170	200
	230	210	210
	140	180	140
	200	150	200
	225	180	190
	170	190	190
	150	210	195
	190	165	140
	220	135	260
	165	190	130
	210	185	155
	205	210	165
	185	130	185
	185	170	180
	170	140	190
	170	195	190
	140	145	150
SE	30.8	24.4	30.3
Average	e 192.7	172.0	181.1

Pansy plant width observations in mm 03/08/2020			8/2020
	Treatment	Treatment	Treatment
	1	2	3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	330	245	320
	320	210	375
	365	325	310
	315	240	365
	330	350	300
	340	345	320
	320	320	240
	300	355	300
	290	320	230
	300	200	330
	280	300	300
	300	195	205
SE	22.0	61.5	51.5
Average	321.0	283.8	299.6

Pansy flower number observations 3/07/2020			
	Treatment 1	Treatment 2	Treatment 3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	5	3	5 2 5
	5	4	2
	6	0	5
	0	2	8
	7	2 2 3	11
	9	3	3
	10	5	7
	1	3	0
	2	2	5
	7	4	0 5 4 3 7 2 6 2 5 2 4 6
	2	5	3
	1	6	7
	9	4	2
	8	1	6
	2	6	2
	8	6	5
	10	8	2
	4	4	4
	8	2	6
	8	0	4
	11	4	4 3
	3	1	4
SE	3.4	2.1	2.4
Average	5.7	3.4	4.5

	Treatment	Treatment	Treatment
	1	2	3
N form ratio			
NH4:NO3	0 - 100	20 - 80	30 - 70
Observations	121	122	116
	87	87	114
	133	90	101
	106	102	111
	116	91	115
	73	110	78
	111	99	67
	121	115	83
	96	89	94
	111	63	77
	109	90	83
	80	85	72
SE	18.0	15.7	18.2
Average	105.3	95.3	92.6